Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Determine the following limit in simplest form. If the limit is infinite, state that the limit does not exist (DNE).

lim_(x rarr oo)(sqrt(9x^(6)+20x^(4)))/(10x^(3)+6x)
Answer:

Determine the following limit in simplest form. If the limit is infinite, state that the limit does not exist (DNE).\newlinelimx9x6+20x410x3+6x \lim _{x \rightarrow \infty} \frac{\sqrt{9 x^{6}+20 x^{4}}}{10 x^{3}+6 x} \newlineAnswer:

Full solution

Q. Determine the following limit in simplest form. If the limit is infinite, state that the limit does not exist (DNE).\newlinelimx9x6+20x410x3+6x \lim _{x \rightarrow \infty} \frac{\sqrt{9 x^{6}+20 x^{4}}}{10 x^{3}+6 x} \newlineAnswer:
  1. Factor out highest power of x: We are given the limit expression limx(9x6+20x4)/(10x3+6x)\lim_{x \to \infty}(\sqrt{9x^{6}+20x^{4}})/(10x^{3}+6x). To simplify this, we will first factor out the highest power of xx in the numerator and denominator.
  2. Rewrite with factored terms: In the numerator, the highest power of xx inside the square root is x6x^6. We factor out x6x^6 from the square root, which is equivalent to x3x^3 outside the square root.\newline9x6+20x4=x6(9+20/x2)=x39+20/x2\sqrt{9x^{6}+20x^{4}} = \sqrt{x^{6}(9+20/x^{2})} = x^3 \cdot \sqrt{9+20/x^{2}}
  3. Cancel out x3x^3 terms: In the denominator, the highest power of xx is x3x^3. We factor out x3x^3 from the entire denominator.10x3+6xx3(10+6x2)\frac{10x^{3}+6x}{x^3(10+\frac{6}{x^2})}
  4. Approach infinity: Now we rewrite the limit expression with the factored terms.\newlinelimx(9x6+20x410x3+6x)=limx(x39+20/x2x3(10+6/x2))\lim_{x \to \infty}\left(\frac{\sqrt{9x^{6}+20x^{4}}}{10x^{3}+6x}\right) = \lim_{x \to \infty}\left(\frac{x^3 \sqrt{9+20/x^{2}}}{x^3(10+6/x^2)}\right)
  5. Simplify square root: We can now cancel out the x3x^3 terms in the numerator and the denominator.\lim_{x \to \infty}\left(\frac{x^\(3\) \sqrt{\(9\)+\frac{\(20\)}{x^{\(2\)}}}}{x^\(3\)(\(10\)+\frac{\(6\)}{x^\(2\)})}\right) = \lim_{x \to \infty}\left(\frac{\sqrt{\(9\)+\frac{\(20\)}{x^{\(2\)}}}}{\(10\)+\frac{\(6\)}{x^\(2\)}}\right)
  6. Simplify square root: We can now cancel out the \(x^3\) terms in the numerator and the denominator.\(\lim_{x \to \infty}\left(\frac{x^3 \sqrt{9+\frac{20}{x^{2}}}}{x^3(10+\frac{6}{x^2})}\right) = \lim_{x \to \infty}\left(\frac{\sqrt{9+\frac{20}{x^{2}}}}{10+\frac{6}{x^2}}\right)\)As \(x\) approaches infinity, the terms \(\frac{20}{x^2}\) and \(\frac{6}{x^2}\) in the limit expression will approach zero.\(\lim_{x \to \infty}\left(\frac{\sqrt{9+\frac{20}{x^{2}}}}{10+\frac{6}{x^2}}\right) = \lim_{x \to \infty}\left(\frac{\sqrt{9+0}}{10+0}\right) = \frac{\sqrt{9}}{10}\)
  7. Simplify square root: We can now cancel out the \(x^3\) terms in the numerator and the denominator.\(\newline\)\[\lim_{x \to \infty}\left(\frac{x^3 \sqrt{9+\frac{20}{x^{2}}}}{x^3(10+\frac{6}{x^2})}\right) = \lim_{x \to \infty}\left(\frac{\sqrt{9+\frac{20}{x^{2}}}}{10+\frac{6}{x^2}}\right)As xx approaches infinity, the terms 20x2\frac{20}{x^2} and 6x2\frac{6}{x^2} in the limit expression will approach zero.\newlinelimx(9+20x210+6x2)=limx(9+010+0)=910\lim_{x \to \infty}\left(\frac{\sqrt{9+\frac{20}{x^{2}}}}{10+\frac{6}{x^2}}\right) = \lim_{x \to \infty}\left(\frac{\sqrt{9+0}}{10+0}\right) = \frac{\sqrt{9}}{10}Simplify the square root of 99, which is 33.\newline910=310\frac{\sqrt{9}}{10} = \frac{3}{10}

More problems from Power rule