Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Determine the following limit in simplest form. If the limit is infinite, state that the limit does not exist (DNE).

lim_(x rarr oo)(root(3)(-19x^(3)-27x^(6)))/(5x+9x^(2)+9)
Answer:

Determine the following limit in simplest form. If the limit is infinite, state that the limit does not exist (DNE).\newlinelimx19x327x635x+9x2+9 \lim _{x \rightarrow \infty} \frac{\sqrt[3]{-19 x^{3}-27 x^{6}}}{5 x+9 x^{2}+9} \newlineAnswer:

Full solution

Q. Determine the following limit in simplest form. If the limit is infinite, state that the limit does not exist (DNE).\newlinelimx19x327x635x+9x2+9 \lim _{x \rightarrow \infty} \frac{\sqrt[3]{-19 x^{3}-27 x^{6}}}{5 x+9 x^{2}+9} \newlineAnswer:
  1. Factor out highest power: We are given the limit expression limx(19x327x63)/(5x+9x2+9)\lim_{x \to \infty}(\sqrt[3]{-19x^{3}-27x^{6}})/(5x+9x^{2}+9). To simplify this, we will first factor out the highest power of xx in the numerator and denominator.
  2. Rewrite with factored terms: In the numerator, the highest power of xx inside the cube root is x6x^6. We factor out x6x^6 from each term inside the cube root.19x327x63=x6(19x327)3\sqrt[3]{-19x^{3}-27x^{6}} = \sqrt[3]{x^6(-\frac{19}{x^3}-27)}
  3. Simplify cube root: In the denominator, the highest power of xx is x2x^2. We factor out x2x^2 from each term.5x+9x2+9=x2(5x+9+9x2)5x+9x^{2}+9 = x^2(\frac{5}{x}+9+\frac{9}{x^2})
  4. Divide by x2x^2: Now we rewrite the limit expression with the factored terms.limx(x6(19x327)3x2(5x+9+9x2))\lim_{x \to \infty}\left(\frac{\sqrt[3]{x^6\left(-\frac{19}{x^3}-27\right)}}{x^2\left(\frac{5}{x}+9+\frac{9}{x^2}\right)}\right)
  5. Approaching infinity: We can simplify the cube root of x6x^6 as x2x^2 because (x2)3=x6(x^2)^3 = x^6.\newlinex6(19x327)3=x219x3273\sqrt[3]{x^6(-\frac{19}{x^3}-27)} = x^2 \cdot \sqrt[3]{-\frac{19}{x^3}-27}
  6. Find limit: Now we divide both the numerator and the denominator by x2x^2. \newlinelimx(x219x3273x2(5x+9+9x2))=limx(19x32735x+9+9x2)\lim_{x \to \infty}\left(\frac{x^2 \sqrt[3]{-\frac{19}{x^3}-27}}{x^2\left(\frac{5}{x}+9+\frac{9}{x^2}\right)}\right) = \lim_{x \to \infty}\left(\frac{\sqrt[3]{-\frac{19}{x^3}-27}}{\frac{5}{x}+9+\frac{9}{x^2}}\right)
  7. Calculate cube root: As xx approaches infinity, the terms with xx in the denominator approach 00.
    limx(19x3273)=273\lim_{x \to \infty}(\sqrt[3]{-\frac{19}{x^3}-27}) = \sqrt[3]{-27}
    limx(5x+9+9x2)=9\lim_{x \to \infty}(\frac{5}{x}+9+\frac{9}{x^2}) = 9
  8. Divide to get limit: Now we can find the limit of the simplified expression. limx(19x32735x+9+9x2)=2739\lim_{x \to \infty}\left(\frac{\sqrt[3]{-\frac{19}{x^3}-27}}{\frac{5}{x}+9+\frac{9}{x^2}}\right) = \frac{\sqrt[3]{-27}}{9}
  9. Divide to get limit: Now we can find the limit of the simplified expression.\newlinelimx(19/x32735/x+9+9/x2)=2739\lim_{x \to \infty}\left(\frac{\sqrt[3]{-19/x^3-27}}{5/x+9+9/x^2}\right) = \frac{\sqrt[3]{-27}}{9}The cube root of 27-27 is 3-3.\newline273=3\sqrt[3]{-27} = -3
  10. Divide to get limit: Now we can find the limit of the simplified expression.\newlinelimx(19/x32735/x+9+9/x2)=2739\lim_{x \to \infty}\left(\frac{\sqrt[3]{-19/x^3-27}}{5/x+9+9/x^2}\right) = \frac{\sqrt[3]{-27}}{9}The cube root of 27-27 is 3-3.\newline273=3\sqrt[3]{-27} = -3Finally, we divide 3-3 by 99 to get the limit.\newline39=13-\frac{3}{9} = -\frac{1}{3}

More problems from Power rule