Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the equation of the plane.\newlineFind the plane that passes through the line of intersection of the planes \newlinexz=2x-z=2 and \newliney+4z=1y+4z=1 and is perpendicular to the plane \newlinex+y2z=3x+y-2z=3\newlinex+5z=11x+5z=-11

Full solution

Q. Find the equation of the plane.\newlineFind the plane that passes through the line of intersection of the planes \newlinexz=2x-z=2 and \newliney+4z=1y+4z=1 and is perpendicular to the plane \newlinex+y2z=3x+y-2z=3\newlinex+5z=11x+5z=-11
  1. Find Direction Vector: Find the direction vector of the line of intersection of the two given planes.\newlineThe direction vector of the line of intersection is given by the cross product of the normal vectors of the two planes.\newlineNormal vector of plane 11 xz=2x-z=2: n1=1,0,1\mathbf{n}_1 = \langle 1, 0, -1 \rangle\newlineNormal vector of plane 22 y+4z=1y+4z=1: n2=0,1,4\mathbf{n}_2 = \langle 0, 1, 4 \rangle\newlineCross product: \mathbf{n}_1 \times \mathbf{n}_2 = \left| \begin{array}{ccc}\(\newlinei & j & k (\newline\)1 & 0 & -1 (\newline\)0 & 1 & 4 \newline\end{array} \right|\)\newlineCalculating the determinant, we get:\newlinei(041(1))j(140(1))+k(1100)i(0\cdot4 - 1\cdot(-1)) - j(1\cdot4 - 0\cdot(-1)) + k(1\cdot1 - 0\cdot0)\newline=i(4)j(4)+k(1)= i(4) - j(4) + k(1)\newline=4,4,1= \langle 4, -4, 1 \rangle
  2. Find Point of Intersection: Find a point of intersection of the two given planes.\newlineTo find a point on the line of intersection, we can set one of the variables to zero and solve the system of equations formed by the two planes.\newlineLet's set y=0y = 0, then we have:\newlinexz=2x - z = 2\newline0+4z=10 + 4z = 1\newlineFrom the second equation, we get z=14z = \frac{1}{4}. Plugging this into the first equation, we get:\newlinex14=2x - \frac{1}{4} = 2\newlinex=2+14x = 2 + \frac{1}{4}\newlinex=94x = \frac{9}{4}\newlineSo, one point on the line of intersection is (94,0,14)(\frac{9}{4}, 0, \frac{1}{4}).
  3. Use Normal Vectors: Use the direction vector of the line of intersection and the normal vector of the third plane to find the normal vector of the required plane.\newlineThe normal vector of the third plane x+y2z=3x+y-2z=3: n3=1,1,2n_3 = \langle 1, 1, -2 \rangle\newlineThe required plane must be perpendicular to this plane, so its normal vector must be parallel to n3n_3.\newlineSince the required plane also contains the line of intersection, its normal vector must be orthogonal to the direction vector found in Step 11.\newlineTherefore, the normal vector of the required plane is the cross product of the direction vector and n3n_3.\newlineDirection vector: d=4,4,1d = \langle 4, -4, 1 \rangle\newlineCross product: d×n3=iamp;jamp;k 4amp;4amp;1 1amp;1amp;2d \times n_3 = \left| \begin{array}{ccc} i & j & k \ 4 & -4 & 1 \ 1 & 1 & -2 \end{array} \right|\newlineCalculating the determinant, we get:\newlinei((4)(2)11)j(4(2)14)+k(41(4)1)i((-4)(-2) - 1\cdot1) - j(4(-2) - 1\cdot4) + k(4\cdot1 - (-4)\cdot1)\newline=i(81)j(84)+k(4+4)= i(8 - 1) - j(-8 - 4) + k(4 + 4)\newline=i(7)j(12)+k(8)= i(7) - j(-12) + k(8)\newline=7,12,8= \langle 7, 12, 8 \rangle
  4. Write Plane Equation: Write the equation of the plane using the normal vector and the point found in Step 22.\newlineThe equation of a plane is given by:\newlinea(xx0)+b(yy0)+c(zz0)=0a(x - x_0) + b(y - y_0) + c(z - z_0) = 0\newlinewhere <a,b,=""c=""><a, b,="" c=""> is the normal vector of the plane and (x0,y0,z0)(x_0, y_0, z_0) is a point on the plane.\newlineUsing the normal vector <7, 12, 8> and the point (94,0,14)(\frac{9}{4}, 0, \frac{1}{4}), we get:\newline7(x94)+12(y0)+8(z14)=07(x - \frac{9}{4}) + 12(y - 0) + 8(z - \frac{1}{4}) = 0\newlineSimplifying, we get:\newline7x634+12y+8z2=07x - \frac{63}{4} + 12y + 8z - 2 = 0\newlineMultiplying through by 44 to clear the fractions, we get:\newline28x63+48y+32z8=028x - 63 + 48y + 32z - 8 = 0\newlineCombining like terms, we get:\newline28x+48y+32z71=028x + 48y + 32z - 71 = 0

More problems from Find the length of the transverse or conjugate axes of a hyperbola