Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

David measures a line to be 
7.6ft long. If the actual measurement is 
8ft, find David's relative error to the nearest thousandth.
Answer:

David measures a line to be 7.6ft 7.6 \mathrm{ft} long. If the actual measurement is 8ft 8 \mathrm{ft} , find David's relative error to the nearest thousandth.\newlineAnswer:

Full solution

Q. David measures a line to be 7.6ft 7.6 \mathrm{ft} long. If the actual measurement is 8ft 8 \mathrm{ft} , find David's relative error to the nearest thousandth.\newlineAnswer:
  1. Understand relative error: Understand the concept of relative error.\newlineRelative error is the absolute error divided by the actual measurement, often expressed as a percentage or a decimal. In this case, we need to find the absolute error first, which is the difference between the measured value and the actual value.
  2. Calculate absolute error: Calculate the absolute error.\newlineAbsolute error = Measured ValueActual Value|\text{Measured Value} - \text{Actual Value}|\newlineAbsolute error = 7.6ft8ft|7.6\text{ft} - 8\text{ft}|\newlineAbsolute error = 0.4ft|-0.4\text{ft}|\newlineAbsolute error = 0.4ft0.4\text{ft}
  3. Calculate relative error: Calculate the relative error.\newlineRelative error = (Absolute Error/Actual Value)(\text{Absolute Error} / \text{Actual Value})\newlineRelative error = (0.4ft/8ft)(0.4\,\text{ft} / 8\,\text{ft})\newlineRelative error = 0.050.05
  4. Convert to nearest thousandth: Convert the relative error to the nearest thousandth.\newlineTo express the relative error to the nearest thousandth, we keep three decimal places.\newlineRelative error = 0.0500.050

More problems from Percent error: word problems