Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

((6n^(3)*4n^(3))/(5n^(-2)))^(-1)

(6n34n35n2)1 \left(\frac{6 n^{3} \cdot 4 n^{3}}{5 n^{-2}}\right)^{-1}

Full solution

Q. (6n34n35n2)1 \left(\frac{6 n^{3} \cdot 4 n^{3}}{5 n^{-2}}\right)^{-1}
  1. Write Expression: Write down the given expression and apply the power of a quotient rule.\newlineThe power of a quotient rule states that (a/b)n=an/bn(a/b)^n = a^n / b^n.\newlineGiven expression: ((6n34n3)/(5n2))1((6n^{3}\cdot4n^{3})/(5n^{-2}))^{-1}\newlineApply the power of a quotient rule to the entire expression.
  2. Apply Power Rule: Distribute the exponent of 1-1 to both the numerator and the denominator.\newline((6n34n3)1)/(5n2)1\left(\left(6n^{3}\cdot 4n^{3}\right)^{-1}\right)/\left(5n^{-2}\right)^{-1}
  3. Distribute Exponent: Simplify the numerator and the denominator separately.\newlineNumerator: (6n34n3)1=(24n6)1=241n6(6n^{3}\cdot4n^{3})^{-1} = (24n^{6})^{-1} = 24^{-1} \cdot n^{-6}\newlineDenominator: (5n2)1=51n2(5n^{-2})^{-1} = 5^{-1} \cdot n^{2}
  4. Simplify Numerator: Combine the simplified numerator and denominator.\newline(241n6)/(51n2)(24^{-1} \cdot n^{-6}) / (5^{-1} \cdot n^{2})
  5. Simplify Denominator: Simplify the expression by multiplying the reciprocal of the denominator with the numerator.\newline(241n6)(51n2)(24^{-1} \cdot n^{-6}) \cdot (5^{1} \cdot n^{-2})
  6. Combine Numerator & Denominator: Multiply the coefficients and add the exponents of like bases.\newline(124×5)×n(62)(\frac{1}{24} \times 5) \times n^{(-6 - 2)}\newline= (524)×n8(\frac{5}{24}) \times n^{-8}
  7. Multiply Reciprocals: Write the final simplified expression.\newlineThe final simplified expression is (524)n8(\frac{5}{24}) \cdot n^{-8}, which can also be written as 524n8\frac{5}{24n^{8}}.

More problems from Multiplication with rational exponents