Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
d
(
n
)
=
5
16
(
2
)
n
−
1
d(n)=\frac{5}{16}(2)^{n-1}
d
(
n
)
=
16
5
(
2
)
n
−
1
\newline
What is the
5
th
5^{\text {th }}
5
th
term in the sequence?
View step-by-step help
Home
Math Problems
Algebra 1
Geometric sequences
Full solution
Q.
d
(
n
)
=
5
16
(
2
)
n
−
1
d(n)=\frac{5}{16}(2)^{n-1}
d
(
n
)
=
16
5
(
2
)
n
−
1
\newline
What is the
5
th
5^{\text {th }}
5
th
term in the sequence?
Substitute
n
=
5
n=5
n
=
5
:
To find the
5
th
5^{\text{th}}
5
th
term in the sequence, we need to substitute
n
=
5
n=5
n
=
5
into the formula
d
(
n
)
=
5
16
(
2
)
n
−
1
d(n)=\frac{5}{16}(2)^{n-1}
d
(
n
)
=
16
5
(
2
)
n
−
1
.
Calculate the exponent:
Substitute
n
=
5
n=5
n
=
5
into the formula:
d
(
5
)
=
5
16
(
2
)
5
−
1
d(5)=\frac{5}{16}(2)^{5-1}
d
(
5
)
=
16
5
(
2
)
5
−
1
.
Calculate
2
4
2^4
2
4
:
Calculate the exponent:
2
(
5
−
1
)
=
2
4
2^{(5-1)} = 2^4
2
(
5
−
1
)
=
2
4
.
Multiply the result:
Calculate
2
4
2^4
2
4
:
2
4
=
2
×
2
×
2
×
2
=
16
2^4 = 2 \times 2 \times 2 \times 2 = 16
2
4
=
2
×
2
×
2
×
2
=
16
.
Simplify the expression:
Multiply the result by
(
5
)
/
(
16
)
(5)/(16)
(
5
)
/
(
16
)
:
d
(
5
)
=
(
5
)
/
(
16
)
×
16
d(5) = (5)/(16) \times 16
d
(
5
)
=
(
5
)
/
(
16
)
×
16
.
Expression simplifies to:
Simplify the expression:
(
5
16
)
×
16
=
5
×
(
16
16
)
(\frac{5}{16}) \times 16 = 5 \times (\frac{16}{16})
(
16
5
)
×
16
=
5
×
(
16
16
)
.
Final result:
Since
(
16
)
/
(
16
)
(16)/(16)
(
16
)
/
(
16
)
equals
1
1
1
, the expression simplifies to:
5
×
1
=
5
5 \times 1 = 5
5
×
1
=
5
.
More problems from Geometric sequences
Question
Find the sum of the finite arithmetic series.
∑
n
=
1
10
(
7
n
+
4
)
\sum_{n=1}^{10} (7n+4)
∑
n
=
1
10
(
7
n
+
4
)
\newline
______
Get tutor help
Posted 1 year ago
Question
Type the missing number in this sequence: `55,\59,\63,\text{_____},\71,\75,\79`
Get tutor help
Posted 9 months ago
Question
Type the missing number in this sequence: `2, 4 8`, ______,`32`
Get tutor help
Posted 9 months ago
Question
What kind of sequence is this?
2
,
10
,
50
,
250
,
…
2, 10, 50, 250, \ldots
2
,
10
,
50
,
250
,
…
Choices:Choices:
\newline
[A]arithmetic
\text{[A]arithmetic}
[A]arithmetic
\newline
[B]geometric
\text{[B]geometric}
[B]geometric
\newline
[C]both
\text{[C]both}
[C]both
\newline
[D]neither
\text{[D]neither}
[D]neither
Get tutor help
Posted 9 months ago
Question
What is the missing number in this pattern?
1
,
4
,
9
,
16
,
25
,
36
,
49
,
64
,
81
,
_
_
_
_
1, 4, 9, 16, 25, 36, 49, 64, 81, \_\_\_\_
1
,
4
,
9
,
16
,
25
,
36
,
49
,
64
,
81
,
____
Get tutor help
Posted 1 year ago
Question
Classify the series.
∑
n
=
0
12
(
n
+
2
)
3
\sum_{n = 0}^{12} (n + 2)^3
∑
n
=
0
12
(
n
+
2
)
3
\newline
Choices:
\newline
[A]arithmetic
\text{[A]arithmetic}
[A]arithmetic
\newline
[B]geometric
\text{[B]geometric}
[B]geometric
\newline
[C]both
\text{[C]both}
[C]both
\newline
[D]neither
\text{[D]neither}
[D]neither
Get tutor help
Posted 9 months ago
Question
Find the first three partial sums of the series.
\newline
1
+
6
+
11
+
16
+
21
+
26
+
⋯
1 + 6 + 11 + 16 + 21 + 26 + \cdots
1
+
6
+
11
+
16
+
21
+
26
+
⋯
\newline
Write your answers as integers or fractions in simplest form.
\newline
S
1
=
S_1 =
S
1
=
____
\newline
S
2
=
S_2 =
S
2
=
____
\newline
S
3
=
S_3 =
S
3
=
____
Get tutor help
Posted 1 year ago
Question
Find the third partial sum of the series.
\newline
3
+
9
+
15
+
21
+
27
+
33
+
⋯
3 + 9 + 15 + 21 + 27 + 33 + \cdots
3
+
9
+
15
+
21
+
27
+
33
+
⋯
\newline
Write your answer as an integer or a fraction in simplest form.
\newline
S
3
=
S_3 =
S
3
=
____
Get tutor help
Posted 1 year ago
Question
Find the first three partial sums of the series.
\newline
1
+
7
+
13
+
19
+
25
+
31
+
⋯
1 + 7 + 13 + 19 + 25 + 31 + \cdots
1
+
7
+
13
+
19
+
25
+
31
+
⋯
\newline
Write your answers as integers or fractions in simplest form.
\newline
S
1
=
S_1 =
S
1
=
____
\newline
S
2
=
S_2 =
S
2
=
____
\newline
S
3
=
S_3 =
S
3
=
____
Get tutor help
Posted 1 year ago
Question
Does the infinite geometric series converge or diverge?
\newline
1
+
3
4
+
9
16
+
27
64
+
⋯
1 + \frac{3}{4} + \frac{9}{16} + \frac{27}{64} + \cdots
1
+
4
3
+
16
9
+
64
27
+
⋯
\newline
Choices:
\newline
[A]converge
\text{[A]converge}
[A]converge
\newline
[B]diverge
\text{[B]diverge}
[B]diverge
Get tutor help
Posted 9 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant