Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

cot ((x)/(2))=a=>sin x= ?
(cot: ctg: cotangent)

cotx2=asinx= \cot \frac{x}{2}=a \Rightarrow \sin x= ?\newline(cot: ctg: cotangent)

Full solution

Q. cotx2=asinx= \cot \frac{x}{2}=a \Rightarrow \sin x= ?\newline(cot: ctg: cotangent)
  1. Express cot(x2)\cot\left(\frac{x}{2}\right): Express cot(x2)\cot\left(\frac{x}{2}\right) in terms of sine and cosine.\newlineCotangent is the reciprocal of tangent, which is sine over cosine. Therefore, cot(x2)\cot\left(\frac{x}{2}\right) can be written as cos(x2)sin(x2)\frac{\cos\left(\frac{x}{2}\right)}{\sin\left(\frac{x}{2}\right)}.
  2. Use Pythagorean identity: Use the Pythagorean identity to express sin(x2)\sin(\frac{x}{2}) in terms of cos(x2)\cos(\frac{x}{2}). The Pythagorean identity states that sin2(θ)+cos2(θ)=1\sin^2(\theta) + \cos^2(\theta) = 1. We can solve for sin(x2)\sin(\frac{x}{2}) by rearranging the identity to sin2(x2)=1cos2(x2)\sin^2(\frac{x}{2}) = 1 - \cos^2(\frac{x}{2}) and then taking the square root.
  3. Express sin(x)\sin(x): Express sin(x)\sin(x) in terms of sin(x2)\sin(\frac{x}{2}) and cos(x2)\cos(\frac{x}{2}) using the double angle formula.\newlineThe double angle formula for sine is sin(x)=2sin(x2)cos(x2)\sin(x) = 2 \cdot \sin(\frac{x}{2}) \cdot \cos(\frac{x}{2}).
  4. Substitute into formula: Substitute the expression for cot(x2)\cot(\frac{x}{2}) into the double angle formula.\newlineSince cot(x2)=cos(x2)sin(x2)\cot(\frac{x}{2}) = \frac{\cos(\frac{x}{2})}{\sin(\frac{x}{2})}, we can write sin(x)\sin(x) as sin(x)=2sin(x2)(1sin(x2))cot(x2)\sin(x) = 2 \cdot \sin(\frac{x}{2}) \cdot \left(\frac{1}{\sin(\frac{x}{2})}\right) \cdot \cot(\frac{x}{2}).
  5. Simplify sin(x)\sin(x): Simplify the expression for sin(x)\sin(x). The sin(x2)\sin\left(\frac{x}{2}\right) terms cancel out, leaving us with sin(x)=2cot(x2)\sin(x) = 2 \cdot \cot\left(\frac{x}{2}\right). Since cot(x2)\cot\left(\frac{x}{2}\right) is given as aa, we have sin(x)=2a\sin(x) = 2a.

More problems from Sin, cos, and tan of special angles