Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

csc20sec20=\csc 20^\circ - \sec 20^\circ=

Full solution

Q. csc20sec20=\csc 20^\circ - \sec 20^\circ=
  1. Understand Trigonometric Identities: Understand the trigonometric identities.\newlineCosecant is the reciprocal of sine, and secant is the reciprocal of cosine. Therefore, cosec(θ)=1sin(θ)\text{cosec}(\theta) = \frac{1}{\sin(\theta)} and sec(20)=1cos(20)\text{sec}(20^\circ) = \frac{1}{\cos(20^\circ)}.
  2. Calculate Sine and Cosine: Calculate the value of sine and cosine for 2020 degrees.\newlineUnfortunately, sine and cosine of 2020 degrees are not standard angles for which we have exact values. They can be calculated using a calculator or trigonometric tables.
  3. Express Using Reciprocal Identities: Express the original problem using the reciprocal identities.\newlinecsc(20)sec(20)=1sin(20)1cos(20)\csc(20^\circ) - \sec(20^\circ) = \frac{1}{\sin(20^\circ)} - \frac{1}{\cos(20^\circ)}
  4. Find Common Denominator: Find a common denominator to combine the fractions.\newlineThe common denominator for sin(20)\sin(20^\circ) and cos(20)\cos(20^\circ) is sin(20)cos(20)\sin(20^\circ) \cdot \cos(20^\circ).\newlineSo, 1sin(20)1cos(20)\frac{1}{\sin(20^\circ)} - \frac{1}{\cos(20^\circ)} becomes cos(20)sin(20)sin(20)cos(20)\frac{\cos(20^\circ) - \sin(20^\circ)}{\sin(20^\circ) \cdot \cos(20^\circ)}.
  5. Calculate Values: Calculate the value of sin(20)\sin(20^\circ) and cos(20)\cos(20^\circ) using a calculator.\newlinesin(20)0.34202\sin(20^\circ) \approx 0.34202\newlinecos(20)0.93969\cos(20^\circ) \approx 0.93969
  6. Substitute Values: Substitute the values into the expression.\newline(cos(20)sin(20))/(sin(20)cos(20))(0.939690.34202)/(0.342020.93969)(\cos(20^\circ) - \sin(20^\circ)) / (\sin(20^\circ) * \cos(20^\circ)) \approx (0.93969 - 0.34202) / (0.34202 * 0.93969)
  7. Perform Calculations: Perform the calculations.\newline(0.939690.34202)0.59767(0.93969 - 0.34202) \approx 0.59767\newline(0.34202×0.93969)0.32139(0.34202 \times 0.93969) \approx 0.32139\newlineNow, divide the difference by the product: 0.59767/0.321391.859250.59767 / 0.32139 \approx 1.85925