Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Construct the confidence interval for the population mean mu.
c=0.90, bar(x)=15.2,sigma=5.0", and "n=90
A 90% confidence interval for mu is (◻,◻). (Round to one decimal place as needed.)

Construct the confidence interval for the population mean μ \mu .\newlinec=0.90,x=15.2,σ=5.0, and n=90 \mathrm{c}=0.90, \overline{\mathrm{x}}=15.2, \sigma=5.0 \text {, and } \mathrm{n}=90 \newlineA 90% 90 \% confidence interval for μ \mu is (,)( \square, \square ). (Round to one decimal place as needed.)

Full solution

Q. Construct the confidence interval for the population mean μ \mu .\newlinec=0.90,x=15.2,σ=5.0, and n=90 \mathrm{c}=0.90, \overline{\mathrm{x}}=15.2, \sigma=5.0 \text {, and } \mathrm{n}=90 \newlineA 90% 90 \% confidence interval for μ \mu is (,)( \square, \square ). (Round to one decimal place as needed.)
  1. Identify Given Values: Identify the given values.\newlineConfidence level cc = 0.900.90\newlineSample mean xˉ\bar{x} = 15.215.2\newlinePopulation standard deviation σ\sigma = 5.05.0\newlineSample size nn = 9090
  2. Find Z-Score: Find the z-score corresponding to the given confidence level.\newlineFor a 90%90\% confidence level, the z-score that corresponds to the upper tail (5%5\% in each tail for a two-tailed test) is approximately 1.6451.645.
  3. Calculate Margin of Error: Calculate the margin of error (E) using the z-score.\newlineE=z×(σ/n)E = z \times (\sigma / \sqrt{n})\newlineE=1.645×(5.0/90)E = 1.645 \times (5.0 / \sqrt{90})\newlineE=1.645×(5.0/9.4868)E = 1.645 \times (5.0 / 9.4868)\newlineE=1.645×0.5270E = 1.645 \times 0.5270\newlineE=0.8666E = 0.8666
  4. Calculate Confidence Interval Bounds: Calculate the lower and upper bounds of the confidence interval.\newlineLower bound = xˉE\bar{x} - E\newlineLower bound = 15.20.866615.2 - 0.8666\newlineLower bound = 14.333414.3334\newlineUpper bound = xˉ+E\bar{x} + E\newlineUpper bound = 15.2+0.866615.2 + 0.8666\newlineUpper bound = 16.066616.0666\newlineRound both bounds to one decimal place.\newlineLower bound = 14.314.3\newlineUpper bound = 16.116.1

More problems from Calculate mean absolute deviation