Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Consider this matrix transformation:

[[-1,0],[0,-1]]
What is the geometric effect of this transformation?
Choose 1 answer:
A A reflection across the 
y axis
B A reflection across the line 
y=x
(c) A rotation about the origin by 
90^(@)
(D) A rotation about the origin by 
180^(@)

Consider this matrix transformation:\newline[1amp;00amp;1] \left[\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right] \newlineWhat is the geometric effect of this transformation?\newlineChoose 11 answer:\newline(A) A reflection across the y y axis\newline(B) A reflection across the line y=x y=x \newline(C) A rotation about the origin by 90 90^{\circ} \newline(D) A rotation about the origin by 180 180^{\circ}

Full solution

Q. Consider this matrix transformation:\newline[1001] \left[\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right] \newlineWhat is the geometric effect of this transformation?\newlineChoose 11 answer:\newline(A) A reflection across the y y axis\newline(B) A reflection across the line y=x y=x \newline(C) A rotation about the origin by 90 90^{\circ} \newline(D) A rotation about the origin by 180 180^{\circ}
  1. Identify matrix transformation: Identify the matrix transformation.\newlineThe given matrix is:\newline\left[\begin{array}{cc}\(\newline-1 & 0 (\newline\)0 & -1\newline\end{array}\right]\)
  2. Effect on basis vectors: Understand the effect of the matrix on the basis vectors. The effect of the matrix on the basis vectors i(1,0)i (1,0) and j(0,1)j (0,1) will tell us the geometric transformation. Multiplying the matrix by ii: [1amp;0 0amp;1]×[1 0]=[1 0]\begin{bmatrix} -1 & 0 \ 0 & -1 \end{bmatrix} \times \begin{bmatrix} 1 \ 0 \end{bmatrix} = \begin{bmatrix} -1 \ 0 \end{bmatrix}
  3. Effect on basis vector jj: Understand the effect of the matrix on the basis vector jj.\newlineMultiplying the matrix by jj:\newline[1amp;0 0amp;1]×[0 1]=[0 1]\begin{bmatrix}-1 & 0\ 0 & -1\end{bmatrix} \times \begin{bmatrix}0\ 1\end{bmatrix} = \begin{bmatrix}0\ -1\end{bmatrix}
  4. Analysis of transformation results: Analyze the results of the transformation on the basis vectors.\newlineThe basis vector ii (1,0)(1,0) is transformed to (1,0)(-1,0), and the basis vector jj (0,1)(0,1) is transformed to (0,1)(0,-1). This means that the xx-coordinate of any point is negated, and the yy-coordinate of any point is also negated.
  5. Geometric effect of negating coordinates: Determine the geometric effect of negating both coordinates. Negating both the xx and yy coordinates of every point in the plane results in a reflection across the origin, which is equivalent to a rotation about the origin by 180180 degrees.

More problems from Convergent and divergent geometric series