Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Consider this matrix transformation:

[[0,1],[1,0]]
What is the geometric effect of this transformation?
Choose 1 answer:
A A reflection across the 
y axis
B A reflection across the line 
y=x
(c) A rotation about the origin by 
90^(@)
(D) A rotation about the origin by 
180^(@)

Consider this matrix transformation:\newline[0amp;11amp;0] \left[\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right] \newlineWhat is the geometric effect of this transformation?\newlineChoose 11 answer:\newline(A) A reflection across the y y axis\newline(B) A reflection across the line y=x y=x \newline(C) A rotation about the origin by 90 90^{\circ} \newline(D) A rotation about the origin by 180 180^{\circ}

Full solution

Q. Consider this matrix transformation:\newline[0110] \left[\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right] \newlineWhat is the geometric effect of this transformation?\newlineChoose 11 answer:\newline(A) A reflection across the y y axis\newline(B) A reflection across the line y=x y=x \newline(C) A rotation about the origin by 90 90^{\circ} \newline(D) A rotation about the origin by 180 180^{\circ}
  1. Identify Matrix Transformation: Identify the matrix transformation.\newlineThe given matrix is:\newline\left[\begin{array}{cc}\(\newline0 & 1 (\newline\)1 & 0\newline\end{array}\right]\)
  2. Effect on Vector: Understand the effect of the matrix on a vector. Consider a vector (x,y)(x, y). Multiplying this vector by the matrix will result in a new vector (y,x)(y, x).
  3. Analyzing Transformation: Analyze the transformation.\newlineThe transformation swaps the xx-coordinate with the yy-coordinate. This is equivalent to reflecting a point across the line y=xy = x.
  4. Matching with Choices: Match the transformation with the given choices.\newlineThe transformation is a reflection across the line y=xy = x, which corresponds to choice BB.

More problems from Convergent and divergent geometric series