Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Consider the following expression:

(tan((5pi)/(4))+tan((7pi)/(12)))/(1-tan((5pi)/(4))tan((7pi)/(12)))
Find the exact value of the expression without a calculator.
[Hint: This diagram of special trigonometry. values may help.]
Choose 1 answer:
(A) 
(sqrt3)/(3)
(B) 
sqrt3
(C) 
-(sqrt3)/(3)
(D) 
-sqrt3

Consider the following expression:\newlinetan(5π4)+tan(7π12)1tan(5π4)tan(7π12) \frac{\tan \left(\frac{5 \pi}{4}\right)+\tan \left(\frac{7 \pi}{12}\right)}{1-\tan \left(\frac{5 \pi}{4}\right) \tan \left(\frac{7 \pi}{12}\right)} \newlineFind the exact value of the expression without a calculator.\newline[Hint: This diagram of special trigonometry. values may help.]\newlineChoose 11 answer:\newline(A) 33 \frac{\sqrt{3}}{3} \newline(B) 3 \sqrt{3} \newline(C) 33 -\frac{\sqrt{3}}{3} \newline(D) 3 -\sqrt{3}

Full solution

Q. Consider the following expression:\newlinetan(5π4)+tan(7π12)1tan(5π4)tan(7π12) \frac{\tan \left(\frac{5 \pi}{4}\right)+\tan \left(\frac{7 \pi}{12}\right)}{1-\tan \left(\frac{5 \pi}{4}\right) \tan \left(\frac{7 \pi}{12}\right)} \newlineFind the exact value of the expression without a calculator.\newline[Hint: This diagram of special trigonometry. values may help.]\newlineChoose 11 answer:\newline(A) 33 \frac{\sqrt{3}}{3} \newline(B) 3 \sqrt{3} \newline(C) 33 -\frac{\sqrt{3}}{3} \newline(D) 3 -\sqrt{3}
  1. Use Tangent Addition Formula: Use the tangent addition formula: tan(A+B)=tan(A)+tan(B)1tan(A)tan(B)\tan(A + B) = \frac{\tan(A) + \tan(B)}{1 - \tan(A)\tan(B)}.
  2. Calculate Tangent Values: Calculate tan(5π4)\tan\left(\frac{5\pi}{4}\right) and tan(7π12)\tan\left(\frac{7\pi}{12}\right) using special trigonometry values.\newlinetan(5π4)=tan(π+π4)=tan(π4)=1\tan\left(\frac{5\pi}{4}\right) = \tan\left(\pi + \frac{\pi}{4}\right) = \tan\left(\frac{\pi}{4}\right) = -1 (since tan(π+x)=tan(x)\tan(\pi + x) = \tan(x)).\newlinetan(7π12)=tan(π3+π4)=tan(π3)+tan(π4)1tan(π3)tan(π4)=3+1131\tan\left(\frac{7\pi}{12}\right) = \tan\left(\frac{\pi}{3} + \frac{\pi}{4}\right) = \frac{\tan\left(\frac{\pi}{3}\right) + \tan\left(\frac{\pi}{4}\right)}{1 - \tan\left(\frac{\pi}{3}\right)\tan\left(\frac{\pi}{4}\right)} = \frac{\sqrt{3} + 1}{1 - \sqrt{3}\cdot1}.
  3. Plug Values into Expression: Plug these values into the original expression.\newline(tan(5π4)+tan(7π12))/(1tan(5π4)tan(7π12))=(1+(3+1))/(1(1)(3+1)).(\tan(\frac{5\pi}{4}) + \tan(\frac{7\pi}{12})) / (1 - \tan(\frac{5\pi}{4})\tan(\frac{7\pi}{12})) = (-1 + (\sqrt{3} + 1)) / (1 - (-1)(\sqrt{3} + 1)).
  4. Simplify Numerator and Denominator: Simplify the numerator and denominator.\newline(1+3+1)/(1(31))=(3)/(1+3+1)(-1 + \sqrt{3} + 1) / (1 - (-\sqrt{3} - 1)) = (\sqrt{3}) / (1 + \sqrt{3} + 1).
  5. Further Simplify Expression: Further simplify the expression. 32+3\frac{\sqrt{3}}{2 + \sqrt{3}}.
  6. Rationalize Denominator: Rationalize the denominator by multiplying the numerator and denominator by the conjugate of the denominator. 3×(23)(2+3)×(23)\frac{\sqrt{3} \times (2 - \sqrt{3})}{(2 + \sqrt{3}) \times (2 - \sqrt{3})}.
  7. Perform Multiplication: Perform the multiplication. 3×23×34(3)2\frac{\sqrt{3} \times 2 - \sqrt{3} \times \sqrt{3}}{4 - (\sqrt{3})^2}.
  8. Simplify Expression: Simplify the expression. (233)/(43)(2\sqrt{3} - 3) / (4 - 3).
  9. Finish Simplification: Finish the simplification.\newline(233)/1=233(2\sqrt{3} - 3) / 1 = 2\sqrt{3} - 3.

More problems from Domain and range