Consider the following expression:1−tan(45π)tan(127π)tan(45π)+tan(127π)Find the exact value of the expression without a calculator.[Hint: This diagram of special trigonometry. values may help.]Choose 1 answer:(A) 33(B) 3(C) −33(D) −3
Q. Consider the following expression:1−tan(45π)tan(127π)tan(45π)+tan(127π)Find the exact value of the expression without a calculator.[Hint: This diagram of special trigonometry. values may help.]Choose 1 answer:(A) 33(B) 3(C) −33(D) −3
Use Tangent Addition Formula: Use the tangent addition formula: tan(A+B)=1−tan(A)tan(B)tan(A)+tan(B).
Calculate Tangent Values: Calculate tan(45π) and tan(127π) using special trigonometry values.tan(45π)=tan(π+4π)=tan(4π)=−1 (since tan(π+x)=tan(x)).tan(127π)=tan(3π+4π)=1−tan(3π)tan(4π)tan(3π)+tan(4π)=1−3⋅13+1.
Plug Values into Expression: Plug these values into the original expression.(tan(45π)+tan(127π))/(1−tan(45π)tan(127π))=(−1+(3+1))/(1−(−1)(3+1)).
Simplify Numerator and Denominator: Simplify the numerator and denominator.(−1+3+1)/(1−(−3−1))=(3)/(1+3+1).
Further Simplify Expression: Further simplify the expression. 2+33.
Rationalize Denominator: Rationalize the denominator by multiplying the numerator and denominator by the conjugate of the denominator. (2+3)×(2−3)3×(2−3).
Perform Multiplication: Perform the multiplication. 4−(3)23×2−3×3.
Simplify Expression: Simplify the expression. (23−3)/(4−3).
Finish Simplification: Finish the simplification.(23−3)/1=23−3.