Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Consider the following expression:

(tan((25 pi)/(24))-tan((3pi)/(8)))/(1+tan((25 pi)/(24))tan((3pi)/(8)))
Find the exact value of the expression without a calculator.
[Hint: This diagram of special trigonometry values may help. . .
Choose 1 answer:
(A) 
-(sqrt3)/(3)
(B) 
(sqrt3)/(3)
(C) 
sqrt3
(D) 
-sqrt3

Consider the following expression:\newlinetan(25π24)tan(3π8)1+tan(25π24)tan(3π8) \frac{\tan \left(\frac{25 \pi}{24}\right)-\tan \left(\frac{3 \pi}{8}\right)}{1+\tan \left(\frac{25 \pi}{24}\right) \tan \left(\frac{3 \pi}{8}\right)} \newlineFind the exact value of the expression without a calculator.\newline[Hint: This diagram of special trigonometry values may help.].\newlineChoose 11 answer:\newline(A) 33 -\frac{\sqrt{3}}{3} \newline(B) 33 \frac{\sqrt{3}}{3} \newline(C) 3 \sqrt{3} \newline(D) 3 -\sqrt{3}

Full solution

Q. Consider the following expression:\newlinetan(25π24)tan(3π8)1+tan(25π24)tan(3π8) \frac{\tan \left(\frac{25 \pi}{24}\right)-\tan \left(\frac{3 \pi}{8}\right)}{1+\tan \left(\frac{25 \pi}{24}\right) \tan \left(\frac{3 \pi}{8}\right)} \newlineFind the exact value of the expression without a calculator.\newline[Hint: This diagram of special trigonometry values may help.].\newlineChoose 11 answer:\newline(A) 33 -\frac{\sqrt{3}}{3} \newline(B) 33 \frac{\sqrt{3}}{3} \newline(C) 3 \sqrt{3} \newline(D) 3 -\sqrt{3}
  1. Simplify angles in tangent functions: First, let's simplify the angles in the tangent functions. We know that (25π)/24(25 \pi)/24 and (3π)/8(3 \pi)/8 can be simplified to common trigonometric angles.\newline(25π)/24=(π)/24+π=π+(π)/24(25 \pi)/24 = (\pi)/24 + \pi = \pi + (\pi)/24\newline(3π)/8=π/2(π)/8=(4π)/8(π)/8=(3π)/8(3 \pi)/8 = \pi/2 - (\pi)/8 = (4 \pi)/8 - (\pi)/8 = (3 \pi)/8
  2. Use tangent addition formula: Now, let's use the tangent addition formula: tan(ab)=tan(a)tan(b)1+tan(a)tan(b)\tan(a - b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a)\tan(b)}. We can see that our expression has the same structure as the right side of this formula.
  3. Rewrite angles in terms of pi: We can rewrite the angles in terms of pi to find their exact values on the unit circle. The angle (25π)/24(25 \pi)/24 is equivalent to π+(π)/24\pi + (\pi)/24, which is in the second quadrant where tangent is negative. The angle (3π)/8(3 \pi)/8 is in the first quadrant where tangent is positive.
  4. Simplify angle inside tangent function: Using the tangent addition formula, we can rewrite the expression as tan(25π243π8)\tan\left(\frac{25 \pi}{24} - \frac{3 \pi}{8}\right). Since 25π24\frac{25 \pi}{24} is π+π24\pi + \frac{\pi}{24}, and 3π8\frac{3 \pi}{8} is 3π8\frac{3 \pi}{8}, we can simplify this to tan(π+π243π8)\tan\left(\pi + \frac{\pi}{24} - \frac{3 \pi}{8}\right).
  5. Find exact value of tan(11π12)\tan\left(\frac{11\pi}{12}\right): Simplify the angle inside the tangent function: π+π243π8=π+π243π24=π2π24=ππ12\pi + \frac{\pi}{24} - \frac{3 \pi}{8} = \pi + \frac{\pi}{24} - \frac{3 \pi}{24} = \pi - \frac{2 \pi}{24} = \pi - \frac{\pi}{12}.
  6. Use angle subtraction formula for tangent: Now we have tan(ππ12)\tan(\pi - \frac{\pi}{12}). Since tangent has a period of π\pi, tan(ππ12)=tan(π12)\tan(\pi - \frac{\pi}{12}) = \tan(-\frac{\pi}{12}). This is the same as tan(11π12)\tan(\frac{11\pi}{12}), which is in the second quadrant where tangent is negative.
  7. Find exact value of tan(π12)\tan(\frac{\pi}{12}): We need to find the exact value of tan(11π12)\tan(\frac{11\pi}{12}). We can use the angle subtraction formula for tangent again: tan(11π12)=tan(ππ12)=tan(π)tan(π12)1+tan(π)tan(π12)\tan(\frac{11\pi}{12}) = \tan(\pi - \frac{\pi}{12}) = \frac{\tan(\pi) - \tan(\frac{\pi}{12})}{1 + \tan(\pi)\tan(\frac{\pi}{12})}. Since tan(π)=0\tan(\pi) = 0, this simplifies to tan(π12)-\tan(\frac{\pi}{12}).
  8. Simplify expression for tan(π12)\tan(\frac{\pi}{12}): To find tan(π12)\tan(\frac{\pi}{12}), we can use the half-angle formula: tan(π12)=tan(π6/2)\tan(\frac{\pi}{12}) = \tan(\frac{\pi}{6}/2). The half-angle formula for tangent is tan(x2)=1cos(x)sin(x)\tan(\frac{x}{2}) = \frac{1 - \cos(x)}{\sin(x)}. We need to find the values of sin(π6)\sin(\frac{\pi}{6}) and cos(π6)\cos(\frac{\pi}{6}).
  9. Simplify expression for tan(π12):</b>Thevaluesof$sin(π6)-\tan(\frac{\pi}{12}):</b> The values of \$\sin(\frac{\pi}{6}) and cos(π6)\cos(\frac{\pi}{6}) are 12\frac{1}{2} and 32\frac{\sqrt{3}}{2}, respectively. Plugging these into the half-angle formula, we get tan(π12)=13212\tan(\frac{\pi}{12}) = \frac{1 - \frac{\sqrt{3}}{2}}{\frac{1}{2}}.
  10. Correct simplification of tan(π12):</b>Simplifytheexpressionfor$tan(π12)-\tan\left(\frac{\pi}{12}\right):</b> Simplify the expression for \$\tan\left(\frac{\pi}{12}\right): tan(π12)=132/12=23\tan\left(\frac{\pi}{12}\right) = \frac{1 - \sqrt{3}}{2} / \frac{1}{2} = 2 - \sqrt{3}.
  11. Find exact value of original expression: Now we have tan(π12)-\tan\left(\frac{\pi}{12}\right), which is (23)- (2 - \sqrt{3}). This simplifies to 32\sqrt{3} - 2.
  12. Identify error in previous steps: The original expression simplifies to tan(11π12)\tan(\frac{11\pi}{12}), which we found to be 32\sqrt{3} - 2. Therefore, the exact value of the original expression is 32\sqrt{3} - 2.
  13. Identify error in previous steps: The original expression simplifies to tan(11π12)\tan(\frac{11\pi}{12}), which we found to be 32\sqrt{3} - 2. Therefore, the exact value of the original expression is 32\sqrt{3} - 2.However, we made a mistake in the simplification process. The correct simplification of tan(π12)-\tan(\frac{\pi}{12}) should be (23)- (2 - \sqrt{3}), which is 2+3-2 + \sqrt{3}. This is not one of the answer choices, indicating an error in the previous steps.

More problems from Domain and range