Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Compare the domain and range for f(x)=xf(x)=|x| and g(x)=xg(x)=|x|

Full solution

Q. Compare the domain and range for f(x)=xf(x)=|x| and g(x)=xg(x)=|x|
  1. Identify Domain of \newlinef(x)f(x): Step 11: Identify the domain of \newlinef(x)=xf(x) = |x|\newline.\newlineSince the absolute value function is defined for all real numbers, the domain of \newlinef(x)=xf(x) = |x|\newline is all real numbers.
  2. Identify Range of f(x)f(x): Step 22: Identify the range of f(x)=xf(x) = |x|. The absolute value function outputs non-negative values, so the range of f(x)=xf(x) = |x| is y0y \geq 0.
  3. Identify Domain of g(x)g(x): Step 33: Identify the domain of g(x)=xg(x) = |x|. Like f(x)f(x), g(x)=xg(x) = |x| is also defined for all real numbers, so the domain of g(x)=xg(x) = |x| is all real numbers.
  4. Identify Range of \newlineg(x)g(x): Step 44: Identify the range of \newlineg(x)=xg(x) = |x|.\newlineSimilarly to \newlinef(x)f(x), the range of \newlineg(x)=xg(x) = |x| is also \newliney0y \geq 0.

More problems from Domain and range of quadratic functions: equations