Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which expression has a product of 1(1)/(3) ?
(A) 1(2)/(5)×(3)/(4)
(B) 2(2)/(3)×(1)/(2)
(C) 2(1)/(3)×(2)/(3)
(D) 3(1)/(4)×(1)/(4)

Which expression has a product of 113 1 \frac{1}{3} ?\newline(A) 125×34 1 \frac{2}{5} \times \frac{3}{4} \newline(B) 223×12 2 \frac{2}{3} \times \frac{1}{2} \newline(C) 213×23 2 \frac{1}{3} \times \frac{2}{3} \newline(D) 314×14 3 \frac{1}{4} \times \frac{1}{4}

Full solution

Q. Which expression has a product of 113 1 \frac{1}{3} ?\newline(A) 125×34 1 \frac{2}{5} \times \frac{3}{4} \newline(B) 223×12 2 \frac{2}{3} \times \frac{1}{2} \newline(C) 213×23 2 \frac{1}{3} \times \frac{2}{3} \newline(D) 314×14 3 \frac{1}{4} \times \frac{1}{4}
  1. Convert to Improper Fractions: To find the product that equals 1131\frac{1}{3}, we need to convert the mixed numbers to improper fractions and then multiply the numerators and denominators to see if the product matches 1131\frac{1}{3}, which is the same as 43\frac{4}{3} when converted to an improper fraction.
  2. Check Option A: Let's start with option A: 1(25)×(34)1\left(\frac{2}{5}\right)\times\left(\frac{3}{4}\right). Convert the mixed number to an improper fraction: 1(25)=(55+25)=(75)1\left(\frac{2}{5}\right) = \left(\frac{5}{5} + \frac{2}{5}\right) = \left(\frac{7}{5}\right). Now multiply (75)×(34)=(7×35×4)=2120\left(\frac{7}{5}\right)\times\left(\frac{3}{4}\right) = \left(\frac{7\times3}{5\times4}\right) = \frac{21}{20}. This does not equal 43\frac{4}{3}.
  3. Check Option B: Now, let's check option B: 2(23)×(12)2\left(\frac{2}{3}\right)\times\left(\frac{1}{2}\right). Convert the mixed number to an improper fraction: 2(23)=(63+23)=(83)2\left(\frac{2}{3}\right) = \left(\frac{6}{3} + \frac{2}{3}\right) = \left(\frac{8}{3}\right). Now multiply (83)×(12)=(8×13×2)=86=43\left(\frac{8}{3}\right)\times\left(\frac{1}{2}\right) = \left(\frac{8\times1}{3\times2}\right) = \frac{8}{6} = \frac{4}{3}. This equals 43\frac{4}{3}, so option B is the correct answer.
  4. Check Option C: Even though we have found the correct answer, let's check the remaining options for completeness.\newlineOption C: 2(13)×(23)2\left(\frac{1}{3}\right)\times\left(\frac{2}{3}\right). Convert the mixed number to an improper fraction: 2(13)=(63+13)=(73)2\left(\frac{1}{3}\right) = \left(\frac{6}{3} + \frac{1}{3}\right) = \left(\frac{7}{3}\right). Now multiply (73)×(23)=(7×23×3)=149\left(\frac{7}{3}\right)\times\left(\frac{2}{3}\right) = \left(\frac{7\times2}{3\times3}\right) = \frac{14}{9}. This does not equal 43\frac{4}{3}.
  5. Check Option D: Finally, let's check option D: 3(14)×(14)3\left(\frac{1}{4}\right)\times\left(\frac{1}{4}\right). Convert the mixed number to an improper fraction: 3(14)=(124+14)=(134)3\left(\frac{1}{4}\right) = \left(\frac{12}{4} + \frac{1}{4}\right) = \left(\frac{13}{4}\right). Now multiply (134)×(14)=(13×14×4)=1316\left(\frac{13}{4}\right)\times\left(\frac{1}{4}\right) = \left(\frac{13\times1}{4\times4}\right) = \frac{13}{16}. This does not equal 43\frac{4}{3}.

More problems from Sum of finite series starts from 1