Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Chad was asked whether the following equation is an identity:

(3x+2y)^(2)=(3x+2y)(3x-2y)+2(2y)^(2)
He performed the following steps:

(3x+2y)^(2)

rarr"" Step "1"=9x^(2)+4y^(2)

longrightarrow^(" Step "2)=9x^(2)+4y^(2)+4y^(2)-4y^(2)

harr^(" Step ")=(9x^(2)-4y^(2))+8y^(2)

^(" Step ")4=(3x+2y)(3x-2y)+2(2y)^(2)
For this reason, Chad stated that the equation is a true identity.
Is Chad correct? If not, in which step did he make a mistake?
Choose 1 answer:
(A) Chad is correct.
(B) Chad is incorrect. He made a mistake in step 1.
(C) Chad is incorrect. He made a mistake in step 2.
(D) Chad is incorrect. He made a mistake in step 4.

Chad was asked whether the following equation is an identity:\newline(3x+2y)2=(3x+2y)(3x2y)+2(2y)2 (3 x+2 y)^{2}=(3 x+2 y)(3 x-2 y)+2(2 y)^{2} \newlineHe performed the following steps:\newline(3x+2y)2 (3 x+2 y)^{2} \newline Step 1=9x2+4y2 \stackrel{\text { Step } 1}{\hookrightarrow}=9 x^{2}+4 y^{2} \newline Step 2=9x2+4y2+4y24y2 \stackrel{\text { Step } 2}{\hookrightarrow}=9 x^{2}+4 y^{2}+4 y^{2}-4 y^{2} \newline Step 3=(9x24y2)+8y2 \stackrel{\text { Step } 3}{\hookrightarrow}=\left(9 x^{2}-4 y^{2}\right)+8 y^{2} \newline Step 4=(3x+2y)(3x2y)+2(2y)2 \stackrel{\text { Step } 4}{\hookrightarrow}=(3 x+2 y)(3 x-2 y)+2(2 y)^{2} \newlineFor this reason, Chad stated that the equation is a true identity.\newlineIs Chad correct? If not, in which step did he make a mistake?\newlineChoose 11 answer:\newline(A) Chad is correct.\newline(B) Chad is incorrect. He made a mistake in step 11.\newline(C) Chad is incorrect. He made a mistake in step 22.\newline(D) Chad is incorrect. He made a mistake in step 44.

Full solution

Q. Chad was asked whether the following equation is an identity:\newline(3x+2y)2=(3x+2y)(3x2y)+2(2y)2 (3 x+2 y)^{2}=(3 x+2 y)(3 x-2 y)+2(2 y)^{2} \newlineHe performed the following steps:\newline(3x+2y)2 (3 x+2 y)^{2} \newline Step 1=9x2+4y2 \stackrel{\text { Step } 1}{\hookrightarrow}=9 x^{2}+4 y^{2} \newline Step 2=9x2+4y2+4y24y2 \stackrel{\text { Step } 2}{\hookrightarrow}=9 x^{2}+4 y^{2}+4 y^{2}-4 y^{2} \newline Step 3=(9x24y2)+8y2 \stackrel{\text { Step } 3}{\hookrightarrow}=\left(9 x^{2}-4 y^{2}\right)+8 y^{2} \newline Step 4=(3x+2y)(3x2y)+2(2y)2 \stackrel{\text { Step } 4}{\hookrightarrow}=(3 x+2 y)(3 x-2 y)+2(2 y)^{2} \newlineFor this reason, Chad stated that the equation is a true identity.\newlineIs Chad correct? If not, in which step did he make a mistake?\newlineChoose 11 answer:\newline(A) Chad is correct.\newline(B) Chad is incorrect. He made a mistake in step 11.\newline(C) Chad is incorrect. He made a mistake in step 22.\newline(D) Chad is incorrect. He made a mistake in step 44.
  1. Expand using formula: Expand (3x+2y)2(3x+2y)^{2} using the formula (a+b)2=a2+2ab+b2(a+b)^2 = a^2 + 2ab + b^2.\newlineCalculation: (3x+2y)2=9x2+2(3x)(2y)+4y2=9x2+12xy+4y2(3x+2y)^{2} = 9x^2 + 2\cdot(3x)\cdot(2y) + 4y^2 = 9x^2 + 12xy + 4y^2.

More problems from Multiply and divide rational expressions