Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Carter measures a line to be 
9.44ft long. If the actual measurement is 
9ft, find Carter's relative error to the nearest thousandth.
Answer:

Carter measures a line to be 9.44ft 9.44 \mathrm{ft} long. If the actual measurement is 9ft 9 \mathrm{ft} , find Carter's relative error to the nearest thousandth.\newlineAnswer:

Full solution

Q. Carter measures a line to be 9.44ft 9.44 \mathrm{ft} long. If the actual measurement is 9ft 9 \mathrm{ft} , find Carter's relative error to the nearest thousandth.\newlineAnswer:
  1. Understand relative error: Understand the concept of relative error. Relative error is the absolute error divided by the actual measurement, often expressed as a percentage or a decimal. The absolute error is the difference between the measured value and the actual value.
  2. Calculate absolute error: Calculate the absolute error.\newlineAbsolute error = Measured ValueActual Value|\text{Measured Value} - \text{Actual Value}|\newlineAbsolute error = 9.44ft9ft|9.44\text{ft} - 9\text{ft}|\newlineAbsolute error = 0.44ft|0.44\text{ft}|\newlineAbsolute error = 0.44ft0.44\text{ft}
  3. Calculate relative error: Calculate the relative error.\newlineRelative error = Absolute ErrorActual Value\frac{\text{Absolute Error}}{\text{Actual Value}}\newlineRelative error = 0.44ft9ft\frac{0.44\,\text{ft}}{9\,\text{ft}}\newlineRelative error \approx 00.0488888888888888904888888888888889
  4. Round relative error: Round the relative error to the nearest thousandth.\newlineRelative error 0.049\approx 0.049 (rounded to the nearest thousandth)

More problems from Percent error: word problems