Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Carter measures a line to be 
8.75cm long. If the actual measurement is 
9cm, find Carter's relative error to the nearest hundredth.
Answer:

Carter measures a line to be 8.75 cm 8.75 \mathrm{~cm} long. If the actual measurement is 9 cm 9 \mathrm{~cm} , find Carter's relative error to the nearest hundredth.\newlineAnswer:

Full solution

Q. Carter measures a line to be 8.75 cm 8.75 \mathrm{~cm} long. If the actual measurement is 9 cm 9 \mathrm{~cm} , find Carter's relative error to the nearest hundredth.\newlineAnswer:
  1. Understand relative error: Understand the concept of relative error. Relative error is the absolute value of the difference between the measured value and the actual value, divided by the actual value. It is often expressed as a percentage.
  2. Calculate absolute error: Calculate the absolute error.\newlineThe absolute error is the difference between the measured value and the actual value.\newlineAbsolute Error = Measured ValueActual Value|\text{Measured Value} - \text{Actual Value}|\newlineAbsolute Error = 8.75 cm9 cm|8.75 \text{ cm} - 9 \text{ cm}|\newlineAbsolute Error = 0.25 cm|-0.25 \text{ cm}|\newlineAbsolute Error = 0.25 cm0.25 \text{ cm}
  3. Calculate relative error: Calculate the relative error.\newlineRelative Error = (Absolute Error/Actual Value)×100(\text{Absolute Error} / \text{Actual Value}) \times 100 (to get a percentage)\newlineRelative Error = (0.25cm/9cm)×100(0.25 \, \text{cm} / 9 \, \text{cm}) \times 100\newlineRelative Error = 0.027777...×1000.027777... \times 100\newlineRelative Error = 2.7777...2.7777...
  4. Round relative error: Round the relative error to the nearest hundredth.\newlineRelative Error 2.78%\approx 2.78\%

More problems from Find trigonometric functions using a calculator