Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Carter measures a line to be 
3.19cm long. If the actual measurement is 
3cm, find Carter's relative error to the nearest hundredth.
Answer:

Carter measures a line to be 3.19 cm 3.19 \mathrm{~cm} long. If the actual measurement is 3 cm 3 \mathrm{~cm} , find Carter's relative error to the nearest hundredth.\newlineAnswer:

Full solution

Q. Carter measures a line to be 3.19 cm 3.19 \mathrm{~cm} long. If the actual measurement is 3 cm 3 \mathrm{~cm} , find Carter's relative error to the nearest hundredth.\newlineAnswer:
  1. Understand relative error: Understand the concept of relative error. Relative error is the absolute error divided by the actual measurement, often expressed as a percentage. The absolute error is the difference between the measured value and the actual value.
  2. Calculate absolute error: Calculate the absolute error.\newlineThe absolute error is the difference between Carter's measurement and the actual measurement.\newlineAbsolute Error = Measured ValueActual Value=3.19cm3cm=0.19cm|\text{Measured Value} - \text{Actual Value}| = |3.19 \, \text{cm} - 3 \, \text{cm}| = 0.19 \, \text{cm}
  3. Calculate relative error: Calculate the relative error.\newlineRelative Error = (Absolute Error/Actual Value)×100%(\text{Absolute Error} / \text{Actual Value}) \times 100\% (to express it as a percentage)\newlineRelative Error = (0.19cm/3cm)×100%(0.19 \, \text{cm} / 3 \, \text{cm}) \times 100\% = 66.333333...\%
  4. Round relative error: Round the relative error to the nearest hundredth.\newlineRelative Error 6.33%\approx 6.33\%

More problems from Find trigonometric functions using a calculator