Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

c(n)=-(9)/(2)(-(4)/(3))^(n-1)
What is the 
2^("nd ") term in the sequence?

c(n)=92(43)n1 c(n)=-\frac{9}{2}\left(-\frac{4}{3}\right)^{n-1} \newlineWhat is the 2nd  2^{\text {nd }} term in the sequence?

Full solution

Q. c(n)=92(43)n1 c(n)=-\frac{9}{2}\left(-\frac{4}{3}\right)^{n-1} \newlineWhat is the 2nd  2^{\text {nd }} term in the sequence?
  1. Step 11: Understand sequence formula: Understand the sequence formula and identify the term to find.\newlineThe sequence is defined by the formula c(n)=92(43)n1c(n)=-\frac{9}{2}\left(-\frac{4}{3}\right)^{n-1}. We need to find the second term, which means we will substitute nn with 22 in the formula.
  2. Step 22: Substitute n n with 2 2 : Substitute n n with 2 2 in the sequence formula.c(2)=92(43)21 c(2) = -\frac{9}{2}\left(-\frac{4}{3}\right)^{2-1}
  3. Step 33: Simplify the exponent: Simplify the exponent.\newlineSince 212^{-1} equals 11, the expression becomes:\newlinec(2)=92(43)1c(2)=-\frac{9}{2}\left(-\frac{4}{3}\right)^1
  4. Step 44: Calculate the value of the term: Calculate the value of the term with the exponent applied.\newlineThe expression simplifies to:\newlinec(2)=92(43)c(2)=-\frac{9}{2}\left(-\frac{4}{3}\right)
  5. Step 55: Multiply the constants: Multiply the constants.\newlineNow we multiply (92)-(\frac{9}{2}) by (43)(-\frac{4}{3}):\newlinec(2)=(92)×(43)c(2)=-(\frac{9}{2}) \times (-\frac{4}{3})\newlinec(2)=9×42×3c(2)= \frac{9 \times 4}{2 \times 3}\newlinec(2)=366c(2)= \frac{36}{6}
  6. Step 66: Simplify the fraction: Simplify the fraction to find the second term. c(2)=366c(2)= \frac{36}{6} equals 66.

More problems from Geometric sequences