Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

c(n)=-6+5(n-1)
Find the 
8^("th ") term in the sequence.

c(n)=6+5(n1) c(n)=-6+5(n-1) \newlineFind the 8th  8^{\text {th }} term in the sequence.

Full solution

Q. c(n)=6+5(n1) c(n)=-6+5(n-1) \newlineFind the 8th  8^{\text {th }} term in the sequence.
  1. Substitute nn with 88: To find the 88th term in the sequence, we need to substitute nn with 88 in the given formula for c(n)c(n).\newlinec(n)=6+5(n1)c(n) = -6 + 5(n - 1)\newlinec(8)=6+5(81)c(8) = -6 + 5(8 - 1)
  2. Simplify expression: Now we simplify the expression inside the parentheses.\newlinec(8)=6+5(7)c(8) = -6 + 5(7)
  3. Multiply 55 by 77: Next, we multiply 55 by 77.c(8)=6+35c(8) = -6 + 35
  4. Add 6-6 to 3535: Finally, we add 6-6 to 3535 to find the 88th term.\newlinec(8)=29c(8) = 29

More problems from Arithmetic sequences