Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

c) 
{:[4x_(2)+x_(3)=0],[x_(1)+x_(2)+x_(3)=0],[2x_(1)+4x_(2)+3x_(3)=0]:}

c) 4x2+x3=0x1+x2+x3=02x1+4x2+3x3=0 \begin{array}{r}4 x_{2}+x_{3}=0 \\ x_{1}+x_{2}+x_{3}=0 \\ 2 x_{1}+4 x_{2}+3 x_{3}=0\end{array}

Full solution

Q. c) 4x2+x3=0x1+x2+x3=02x1+4x2+3x3=0 \begin{array}{r}4 x_{2}+x_{3}=0 \\ x_{1}+x_{2}+x_{3}=0 \\ 2 x_{1}+4 x_{2}+3 x_{3}=0\end{array}
  1. Given System of Equations: We are given a system of linear equations:\newline4x2+x3amp;=0(Equation 1)x1+x2+x3amp;=0(Equation 2)2x1+4x2+3x3amp;=0(Equation 3) \begin{align*} 4x_2 + x_3 &= 0 \quad \text{(Equation 1)} \\ x_1 + x_2 + x_3 &= 0 \quad \text{(Equation 2)} \\ 2x_1 + 4x_2 + 3x_3 &= 0 \quad \text{(Equation 3)} \end{align*} \newlineWe will use the method of substitution or elimination to solve for x1,x2, x_1, x_2, and x3 x_3 .
  2. Solving Equation 11: First, we can solve Equation 11 for x3 x_3 in terms of x2 x_2 :\newlinex3=4x2 x_3 = -4x_2 \newlineWe will use this expression for x3 x_3 to substitute into the other equations.
  3. Substitute into Equation 22: Substitute x3=4x2 x_3 = -4x_2 into Equation 22:\newlinex1+x24x2=0 x_1 + x_2 - 4x_2 = 0 \newlineSimplify the equation:\newlinex13x2=0 x_1 - 3x_2 = 0 \newlineNow, we can solve for x1 x_1 in terms of x2 x_2 :\newlinex1=3x2 x_1 = 3x_2
  4. Solving for x11: Substitute x3=4x2 x_3 = -4x_2 and x1=3x2 x_1 = 3x_2 into Equation 33:\newline2(3x2)+4x2+3(4x2)=0 2(3x_2) + 4x_2 + 3(-4x_2) = 0 \newlineSimplify the equation:\newline6x2+4x212x2=0 6x_2 + 4x_2 - 12x_2 = 0 \newline2x2=0 -2x_2 = 0 \newlineNow, solve for x2 x_2 :\newlinex2=0 x_2 = 0
  5. Substitute into Equation 33: Since x2=0 x_2 = 0 , we can substitute back into the expressions for x1 x_1 and x3 x_3 :\newlinex1=3(0)=0 x_1 = 3(0) = 0 \newlinex3=4(0)=0 x_3 = -4(0) = 0
  6. Solving for x22: We have found the values for x1,x2, x_1, x_2, and x3 x_3 :\newlinex1=0 x_1 = 0 \newlinex2=0 x_2 = 0 \newlinex3=0 x_3 = 0 \newlineThese values satisfy all three equations in the system.

More problems from Find higher derivatives of rational and radical functions