Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Bob measures a line to be 
8.4ft long. If the actual measurement is 
8ft, find Bob's relative error to the nearest thousandth.
Answer:

Bob measures a line to be 8.4ft 8.4 \mathrm{ft} long. If the actual measurement is 8ft 8 \mathrm{ft} , find Bob's relative error to the nearest thousandth.\newlineAnswer:

Full solution

Q. Bob measures a line to be 8.4ft 8.4 \mathrm{ft} long. If the actual measurement is 8ft 8 \mathrm{ft} , find Bob's relative error to the nearest thousandth.\newlineAnswer:
  1. Understand relative error: Understand the concept of relative error. Relative error is the absolute value of the difference between the measured value and the actual value, divided by the actual value. It is often expressed as a percentage or a decimal.
  2. Calculate absolute error: Calculate the absolute error.\newlineThe absolute error is the difference between the measured value and the actual value.\newlineAbsolute error = Measured ValueActual Value|\text{Measured Value} - \text{Actual Value}|\newlineAbsolute error = 8.4ft8ft|8.4\text{ft} - 8\text{ft}|\newlineAbsolute error = 0.4ft|0.4\text{ft}|
  3. Calculate relative error: Calculate the relative error.\newlineRelative error = (Absolute Error/Actual Value)(\text{Absolute Error} / \text{Actual Value})\newlineRelative error = (0.4ft/8ft)(0.4\,\text{ft} / 8\,\text{ft})\newlineRelative error = 0.050.05
  4. Convert to nearest thousandth: Convert the relative error to the nearest thousandth.\newlineTo express the relative error to the nearest thousandth, we keep three decimal places.\newlineRelative error = 0.0500.050
  5. Check for correct expression: Check if the relative error is expressed correctly.\newlineThe relative error is 0.0500.050, which is correctly rounded to the nearest thousandth.

More problems from Percent error: word problems