Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Becky tried to evaluate an expression step by step.

{:[(4)/(5)+7-(5)/(4)],[=(4)/(5)-(5)/(4)+7quad" Step "1],[=0+7quad" Step "2],[=7quad" Step "3]:}
Find Becky's first mistake.
Choose 1 answer:
(A) Commuting a negative term changes the value.
(B) 
(4)/(5) minus 
(5)/(4) equals 
-(9)/(20), not 0
(c) 0 plus 7 equals 0 , not 7 .

Becky tried to evaluate an expression step by step.\newline45+754=4554+7 Step 1=0+7 Step 2 =7 Step 3 \begin{array}{l} \frac{4}{5}+7-\frac{5}{4} \\ =\frac{4}{5}-\frac{5}{4}+7 \quad \text { Step } 1 \\ =0+7 \quad \text { Step 2 } \\ =7 \quad \text { Step } 3 \\ \end{array} \newlineFind Becky's first mistake.\newlineChoose 11 answer:\newline(A) Commuting a negative term changes the value.\newline(B) 45 \frac{4}{5} minus 54 \frac{5}{4} equals 920 -\frac{9}{20} , not 00\newline(C) 00 plus 77 equals 00 , not 77 .

Full solution

Q. Becky tried to evaluate an expression step by step.\newline45+754=4554+7 Step 1=0+7 Step 2 =7 Step 3 \begin{array}{l} \frac{4}{5}+7-\frac{5}{4} \\ =\frac{4}{5}-\frac{5}{4}+7 \quad \text { Step } 1 \\ =0+7 \quad \text { Step 2 } \\ =7 \quad \text { Step } 3 \\ \end{array} \newlineFind Becky's first mistake.\newlineChoose 11 answer:\newline(A) Commuting a negative term changes the value.\newline(B) 45 \frac{4}{5} minus 54 \frac{5}{4} equals 920 -\frac{9}{20} , not 00\newline(C) 00 plus 77 equals 00 , not 77 .
  1. Rearranging terms: Becky starts by rearranging the terms in the expression.\newline[(\(4)/(55) + 77 - (55)/(44)\] becomes [(\(4)/(55) - (55)/(44) + 77\]\newlineThis step involves the commutative property of addition, which allows us to rearrange the terms without changing the value of the expression.
  2. Combining fractions: Becky then attempts to combine the fractions (45)(\frac{4}{5}) and (54)(\frac{5}{4}). She states that (45)(54)(\frac{4}{5}) - (\frac{5}{4}) equals 00. This is incorrect because to combine fractions, we need a common denominator. The correct calculation should be finding the common denominator and then subtracting the fractions.

More problems from Solve a system of equations using any method: word problems