Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the limit.
Lim_(x rarr0)((sin(2x))/(sin(x))).

Evaluate the limit.\newline Limx0sin(2x)sin(x) \operatorname{Lim}_{x \rightarrow 0} \frac{\sin (2 x)}{\sin (x)} .

Full solution

Q. Evaluate the limit.\newline Limx0sin(2x)sin(x) \operatorname{Lim}_{x \rightarrow 0} \frac{\sin (2 x)}{\sin (x)} .
  1. Apply limit property: Use the limit property that limxaf(x)g(x)=limxaf(x)limxag(x)\lim_{x \to a} f(x) \cdot g(x) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x). So, we can write limx0(sin(2x)sin(x))\lim_{x \to 0}\left(\frac{\sin(2x)}{\sin(x)}\right) as limx0(sin(2x))/limx0(sin(x))\lim_{x \to 0}(\sin(2x)) / \lim_{x \to 0}(\sin(x)).
  2. Separate limits for sin(2x)\sin(2x) and sin(x)\sin(x): Apply the limit to both sin(2x)\sin(2x) and sin(x)\sin(x) separately.\newlineSince limx0(sin(x))=0\lim_{x \to 0}(\sin(x)) = 0, we get limx0(sin(2x))/0\lim_{x \to 0}(\sin(2x)) / 0.

More problems from Multiplication with rational exponents