Apply limit property: Use the limit property that limx→af(x)⋅g(x)=limx→af(x)⋅limx→ag(x). So, we can write limx→0(sin(x)sin(2x)) as limx→0(sin(2x))/limx→0(sin(x)).
Separate limits for sin(2x) and sin(x): Apply the limit to both sin(2x) and sin(x) separately.Since limx→0(sin(x))=0, we get limx→0(sin(2x))/0.
More problems from Multiplication with rational exponents