Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify.
(9^(2y)×3^(y))/(27^(-(y)/(3)))

Simplify.\newline92y×3y27y3 \frac{9^{2 y} \times 3^{y}}{27^{-\frac{y}{3}}}

Full solution

Q. Simplify.\newline92y×3y27y3 \frac{9^{2 y} \times 3^{y}}{27^{-\frac{y}{3}}}
  1. Express with same base: We start by expressing all the terms in the expression with the same base, which is 33, because 99 and 2727 are both powers of 33. \newline9=329 = 3^2 and 27=3327 = 3^3
  2. Rewrite using base of 33: Rewrite the expression using the base of 33.\newline(92y×3y)/(27y3)(9^{2y}\times3^{y})/(27^{-\frac{y}{3}})\newline= ((32)2y×3y)/((33)y3)((3^2)^{2y}\times3^{y})/((3^3)^{-\frac{y}{3}})
  3. Apply power rules: Apply the power of a power rule (am)n=amn(a^{m})^{n} = a^{m*n} and the power of a product rule am×an=am+na^{m} \times a^{n} = a^{m+n}.((32)(2y)×3y)/((33)(y)/(3))((3^{2})^{(2y)}\times3^{y})/((3^{3})^{-(y)/(3)}) = (322y×3y)/(33((y)/(3)))(3^{2*2y}\times3^{y})/(3^{3*(-(y)/(3))}) = (34y×3y)/(3y)(3^{4y}\times3^{y})/(3^{-y})
  4. Combine exponents: Combine the exponents in the numerator using the power of a product rule. 34y×3y=34y+y=35y3^{4y}\times3^{y} = 3^{4y+y} = 3^{5y}
  5. Apply quotient rule: Now we have: \newline35y3y\frac{3^{5y}}{3^{-y}}\newlineApply the quotient of powers rule am/an=a(mn)a^m / a^n = a^{(m-n)}.\newline35y3y=3(5y(y))=3(5y+y)=36y\frac{3^{5y}}{3^{-y}} = 3^{(5y - (-y))} = 3^{(5y + y)} = 3^{6y}
  6. Final simplified form: The expression is now simplified to: 36y3^{6y} This is the final simplified form of the given expression.

More problems from Evaluate integers raised to rational exponents