Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Assuming 
x and 
y are both positive, write the following expression in simplest radical form.

3x^(2)y^(2)sqrt(28x^(5)y^(2))
Answer:

Assuming x x and y y are both positive, write the following expression in simplest radical form.\newline3x2y228x5y2 3 x^{2} y^{2} \sqrt{28 x^{5} y^{2}} \newlineAnswer:

Full solution

Q. Assuming x x and y y are both positive, write the following expression in simplest radical form.\newline3x2y228x5y2 3 x^{2} y^{2} \sqrt{28 x^{5} y^{2}} \newlineAnswer:
  1. Write Expression and Identify Simplification: Write the given expression and identify the parts that can be simplified.\newlineThe given expression is 3x2y228x5y23x^{2}y^{2}\sqrt{28x^{5}y^{2}}. We can simplify the square root by factoring out perfect squares.
  2. Factor Expression to Identify Perfect Squares: Factor the expression inside the square root to identify perfect squares. 28x5y2\sqrt{28x^{5}y^{2}} can be written as 4×7×x4×x×y2\sqrt{4 \times 7 \times x^{4} \times x \times y^{2}}. We notice that 44, x4x^{4}, and y2y^{2} are perfect squares.
  3. Take Perfect Squares out of Square Root: Take the perfect squares out of the square root.\newline4×7×x4×x×y2=4×x4×y2×7x\sqrt{4 \times 7 \times x^{4} \times x \times y^{2}} = \sqrt{4} \times \sqrt{x^{4}} \times \sqrt{y^{2}} \times \sqrt{7x}\newline=2×x2×y×7x= 2 \times x^{2} \times y \times \sqrt{7x}.
  4. Multiply Simplified Square Root: Multiply the simplified square root with the rest of the given expression.\newlineNow we have 3x2y2×(2×x2×y×7x)3x^{2}y^{2} \times (2 \times x^{2} \times y \times \sqrt{7x})\newline= 3×2×x2×x2×y2×y×7x3 \times 2 \times x^{2} \times x^{2} \times y^{2} \times y \times \sqrt{7x}\newline= 6×x4×y3×7x6 \times x^{4} \times y^{3} \times \sqrt{7x}.
  5. Write Final Simplified Expression: Write the final simplified expression.\newlineThe expression 6×x4×y3×7x6 \times x^{4} \times y^{3} \times \sqrt{7x} is the simplest radical form of the given expression.

More problems from Simplify radical expressions with root inside the root