Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Assuming 
x and 
y are both positive, write the following expression in simplest radical form.

y^(3)sqrt(28x^(4)y^(6))
Answer:

Assuming x x and y y are both positive, write the following expression in simplest radical form.\newliney328x4y6 y^{3} \sqrt{28 x^{4} y^{6}} \newlineAnswer:

Full solution

Q. Assuming x x and y y are both positive, write the following expression in simplest radical form.\newliney328x4y6 y^{3} \sqrt{28 x^{4} y^{6}} \newlineAnswer:
  1. Express in Exponential Form: First, let's express the square root in exponential form and then combine the exponents.\newline28x4y6=(28x4y6)12\sqrt{28x^{4}y^{6}} = (28x^{4}y^{6})^{\frac{1}{2}}\newlineNow we can multiply the exponents outside the radical by the exponents inside the radical.\newliney3(28x4y6)12y^{3} \cdot (28x^{4}y^{6})^{\frac{1}{2}}
  2. Simplify Inside the Radical: Next, we need to simplify the expression inside the radical. \newline28=4×728 = 4 \times 7, and 44 is a perfect square, so we can take the square root of 44. \newline(28x4y6)1/2=(4×7×x4×y6)1/2(28x^{4}y^{6})^{1/2} = (4 \times 7 \times x^{4} \times y^{6})^{1/2} \newline=(22×7×x4×y6)1/2= (2^2 \times 7 \times x^{4} \times y^{6})^{1/2} \newline=2×7×x4/2×y6/2= 2 \times \sqrt{7} \times x^{4/2} \times y^{6/2} \newline=2×7×x2×y3= 2 \times \sqrt{7} \times x^{2} \times y^{3}
  3. Combine Terms with Same Base: Now we can combine the terms with the same base using the product rule of exponents.\newliney3×2×7×x2×y3y^{3} \times 2 \times \sqrt{7} \times x^{2} \times y^{3}\newline= 2×7×x2×y3+32 \times \sqrt{7} \times x^{2} \times y^{3+3}\newline= 2×7×x2×y62 \times \sqrt{7} \times x^{2} \times y^{6}
  4. Final Simplification: Finally, we have simplified the expression to its simplest radical form.

More problems from Simplify the product of two radical expressions having same variable