Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Assuming 
x and 
y are both positive, write the following expression in simplest radical form.

y^(3)sqrt(24x^(5)y^(2))
Answer:

Assuming x x and y y are both positive, write the following expression in simplest radical form.\newliney324x5y2 y^{3} \sqrt{24 x^{5} y^{2}} \newlineAnswer:

Full solution

Q. Assuming x x and y y are both positive, write the following expression in simplest radical form.\newliney324x5y2 y^{3} \sqrt{24 x^{5} y^{2}} \newlineAnswer:
  1. Express in Exponential Form: First, let's express the square root in exponential form and combine the exponents that are outside and inside the radical.\newliney324x5y2y^{3}\sqrt{24x^{5}y^{2}}\newline= y3(24x5y2)12y^{3}(24x^{5}y^{2})^{\frac{1}{2}}
  2. Apply Power Rules: Now, we apply the power to a product rule and the power to a power rule to the expression inside the radical.\newline(24x5y2)12(24x^{5}y^{2})^{\frac{1}{2}}\newline= 241224^{\frac{1}{2}} * (x5)12(x^{5})^{\frac{1}{2}} * (y2)12(y^{2})^{\frac{1}{2}}\newline= 26x52y2 \cdot \sqrt{6} \cdot x^{\frac{5}{2}} \cdot y
  3. Multiply by y3y^3: Next, we multiply the expression we just found by y3y^{3} outside the radical.\newliney^{3} \times 2 \times \sqrt{6} \times x^{\frac{5}{2}} \times y\(\newline= 2y^{3} \times \sqrt{6} \times x^{\frac{5}{2}} \times y\)
  4. Combine Y Terms: We can now combine the y terms by adding the exponents, since they have the same base.\newline2y^{3} \cdot \sqrt{6} \cdot x^{\frac{5}{2}} \cdot y\(\newline= 2y^{3+1} \cdot \sqrt{6} \cdot x^{\frac{5}{2}}\newline= 2y^{4} \cdot \sqrt{6} \cdot x^{\frac{5}{2}}\)
  5. Final Simplification: Finally, we write the expression in its simplest radical form.\newline2y46x522y^{4} \cdot \sqrt{6} \cdot x^{\frac{5}{2}}\newlineThis is the simplest radical form because there are no like terms to combine and no further simplification of the radical is possible.

More problems from Simplify radical expressions with root inside the root