Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Assuming 
x and 
y are both positive, write the following expression in simplest radical form.

x^(2)y^(2)sqrt(24x^(4)y^(2))
Answer:

Assuming x x and y y are both positive, write the following expression in simplest radical form.\newlinex2y224x4y2 x^{2} y^{2} \sqrt{24 x^{4} y^{2}} \newlineAnswer:

Full solution

Q. Assuming x x and y y are both positive, write the following expression in simplest radical form.\newlinex2y224x4y2 x^{2} y^{2} \sqrt{24 x^{4} y^{2}} \newlineAnswer:
  1. Express in Exponential Form: First, let's express the square root in exponential form and then combine the exponents with the same base.\newlinex2y224x4y2x^{2}y^{2}\sqrt{24x^{4}y^{2}}\newline= x2y2(24x4y2)12x^{2}y^{2}(24x^{4}y^{2})^{\frac{1}{2}}
  2. Apply Power Rules: Now, apply the power to a product rule and the power to a power rule to the expression inside the square root.\newline(24x4y2)12(24x^{4}y^{2})^{\frac{1}{2}}\newline= 241224^{\frac{1}{2}} * (x4)12(x^{4})^{\frac{1}{2}} * (y2)12(y^{2})^{\frac{1}{2}}\newline= 22 * 6\sqrt{6} * x2x^{2} * yy
  3. Multiply Inside and Outside: Next, multiply the expression obtained from the square root with the terms outside the square root.\newlinex2y2×(2×6×x2×y)x^{2}y^{2} \times (2 \times \sqrt{6} \times x^{2} \times y)\newline= 2×x2×x2×y2×y×62 \times x^{2} \times x^{2} \times y^{2} \times y \times \sqrt{6}
  4. Combine Like Terms: Combine the like terms by adding the exponents for the bases xx and yy. \newline= 2×x(2+2)×y(2+1)×62 \times x^{(2+2)} \times y^{(2+1)} \times \sqrt{6} \newline= 2×x4×y3×62 \times x^{4} \times y^{3} \times \sqrt{6}
  5. Simplify Radical Form: The expression is now simplified to its simplest radical form.

More problems from Simplify radical expressions with root inside the root