Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Arianna deposits 
$450 every month into an account earning a monthly interest rate of 
0.525%. How much would she have in the account after 24 months, to the nearest dollar? Use the following formula to determine your answer.

A=d(((1+i)^(n)-1)/(i))

A= the future value of the account after 
n periods

d= the amount invested at the end of each period

i= the interest rate per period

n= the number of periods
Answer:

Arianna deposits $450 \$ 450 every month into an account earning a monthly interest rate of 0.525% 0.525 \% . How much would she have in the account after 2424 months, to the nearest dollar? Use the following formula to determine your answer.\newlineA=d((1+i)n1i) A=d\left(\frac{(1+i)^{n}-1}{i}\right) \newlineA= A= the future value of the account after n n periods\newlined= d= the amount invested at the end of each period\newlinei= i= the interest rate per period\newlinen= n= the number of periods\newlineAnswer:

Full solution

Q. Arianna deposits $450 \$ 450 every month into an account earning a monthly interest rate of 0.525% 0.525 \% . How much would she have in the account after 2424 months, to the nearest dollar? Use the following formula to determine your answer.\newlineA=d((1+i)n1i) A=d\left(\frac{(1+i)^{n}-1}{i}\right) \newlineA= A= the future value of the account after n n periods\newlined= d= the amount invested at the end of each period\newlinei= i= the interest rate per period\newlinen= n= the number of periods\newlineAnswer:
  1. Identify Given Values: Identify the given values from the problem.\newlineArianna deposits $450\$450 every month, so d=$450d = \$450.\newlineThe monthly interest rate is 0.525%0.525\%, so i=0.525/100=0.00525i = 0.525/100 = 0.00525.\newlineThe number of periods is 2424 months, so n=24n = 24.
  2. Convert Interest Rate: Convert the interest rate to a decimal.\newlinei=0.525%=0.525100=0.00525i = 0.525\% = \frac{0.525}{100} = 0.00525
  3. Substitute Values: Substitute the values into the formula.\newlineA=d×((1+i)n1i)A = d \times \left(\frac{(1 + i)^{n} - 1}{i}\right)\newlineA=450×((1+0.00525)2410.00525)A = 450 \times \left(\frac{(1 + 0.00525)^{24} - 1}{0.00525}\right)
  4. Calculate Future Value: Calculate the future value of the account after 2424 periods.\newlineA=450(((1+0.00525)241)/0.00525)A = 450 * (((1 + 0.00525)^{24} - 1) / 0.00525)\newlineA=450(((1.00525)241)/0.00525)A = 450 * (((1.00525)^{24} - 1) / 0.00525)
  5. Perform Exponentiation: Perform the exponentiation.\newline(1.00525)241.13269(1.00525)^{24} \approx 1.13269
  6. Continue Calculation: Continue the calculation.\newlineA=450×((1.132691)/0.00525)A = 450 \times ((1.13269 - 1) / 0.00525)\newlineA=450×(0.13269/0.00525)A = 450 \times (0.13269 / 0.00525)
  7. Complete Division and Multiplication: Complete the division and multiplication.\newlineA=450×(25.274285714285715)A = 450 \times (25.274285714285715)\newlineA11373.428571428572A \approx 11373.428571428572
  8. Round Final Answer: Round the final answer to the nearest dollar.\newlineA$11373A \approx \$11373

More problems from Compound interest