Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Alex measures a line to be 
6.62ft long. If the actual measurement is 
7ft, find Alex's relative error to the nearest thousandth.
Answer:

Alex measures a line to be 6.62ft 6.62 \mathrm{ft} long. If the actual measurement is 7ft 7 \mathrm{ft} , find Alex's relative error to the nearest thousandth.\newlineAnswer:

Full solution

Q. Alex measures a line to be 6.62ft 6.62 \mathrm{ft} long. If the actual measurement is 7ft 7 \mathrm{ft} , find Alex's relative error to the nearest thousandth.\newlineAnswer:
  1. Understand relative error: Understand the concept of relative error. Relative error is the absolute value of the difference between the measured value and the actual value, divided by the actual value. It is often expressed as a percentage or a decimal.
  2. Calculate absolute error: Calculate the absolute error.\newlineThe absolute error is the absolute value of the difference between the measured value and the actual value.\newlineAbsolute error = Measured ValueActual Value|\text{Measured Value} - \text{Actual Value}|\newlineAbsolute error = 6.62ft7ft|6.62\text{ft} - 7\text{ft}|\newlineAbsolute error = 0.38ft|-0.38\text{ft}|\newlineAbsolute error = 0.38ft0.38\text{ft}
  3. Calculate relative error: Calculate the relative error.\newlineRelative error = Absolute errorActual Value\frac{\text{Absolute error}}{\text{Actual Value}}\newlineRelative error = 0.38ft7ft\frac{0.38\,\text{ft}}{7\,\text{ft}}\newlineRelative error \approx 00.05428570542857
  4. Convert to nearest thousandth: Convert the relative error to the nearest thousandth.\newlineTo convert to the nearest thousandth, we round the relative error to three decimal places.\newlineRelative error 0.054\approx 0.054

More problems from Percent error: word problems