Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

 The average yalue of 
csc^(2)x over the interval from 
x=(pi)/(6) to 
x=(pi)/(4) is
(A) 
(3sqrt3)/(pi)
(B) 
(sqrt3)/(pi)
(C) 
(12 )/(pi)(sqrt3-1)
(D) 
3(sqrt3-1)

The average value of csc2x\csc^2 x over the interval from x=π6x=\frac{\pi}{6} to x=π4x=\frac{\pi}{4} is\newline(A) 33π\frac{3\sqrt{3}}{\pi}\newline(B) 3π\frac{\sqrt{3}}{\pi}\newline(C) 12π(31)\frac{12}{\pi}(\sqrt{3}-1)\newline(D) 3(31)3(\sqrt{3}-1)

Full solution

Q. The average value of csc2x\csc^2 x over the interval from x=π6x=\frac{\pi}{6} to x=π4x=\frac{\pi}{4} is\newline(A) 33π\frac{3\sqrt{3}}{\pi}\newline(B) 3π\frac{\sqrt{3}}{\pi}\newline(C) 12π(31)\frac{12}{\pi}(\sqrt{3}-1)\newline(D) 3(31)3(\sqrt{3}-1)
  1. Understand the problem: Understand the problem.\newlineWe need to find the average value of the function csc2x\csc^2 x over the interval [π6,π4][\frac{\pi}{6}, \frac{\pi}{4}]. The average value of a function f(x)f(x) over the interval [a,b][a, b] is given by the integral of f(x)f(x) from aa to bb, divided by the length of the interval (ba)(b - a).
  2. Write down the formula: Write down the formula for the average value of a function.\newlineThe average value of a function f(x)f(x) over the interval [a,b][a, b] is given by:\newlineAverage value = 1(ba)abf(x)dx\frac{1}{(b - a)} \int_{a}^{b} f(x) \, dx
  3. Apply the formula to csc2x\csc^2 x: Apply the formula to csc2x\csc^2 x. For our function csc2x\csc^2 x, a=π6a = \frac{\pi}{6} and b=π4b = \frac{\pi}{4}. So the average value is: Average value = 1(π4π6)×π6π4csc2xdx\frac{1}{(\frac{\pi}{4} - \frac{\pi}{6})} \times \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \csc^2 x \, dx
  4. Calculate the length of the interval: Calculate the length of the interval.\newlineThe length of the interval is π/4π/6=(π/4)(3/3)(π/6)(2/2)=(3π/12)(2π/12)=π/12\pi/4 - \pi/6 = (\pi/4)(3/3) - (\pi/6)(2/2) = (3\pi/12) - (2\pi/12) = \pi/12.
  5. Set up the integral: Set up the integral.\newlineNow we have:\newlineAverage value = (1/(π/12))×π/6π/4csc2xdx(1/(\pi/12)) \times \int_{\pi/6}^{\pi/4} \csc^{2}x \, dx\newlineAverage value = (12/π)×π/6π/4csc2xdx(12/\pi) \times \int_{\pi/6}^{\pi/4} \csc^{2}x \, dx
  6. Evaluate the integral: Evaluate the integral.\newlineThe integral of csc2x\csc^{2}x is cot(x)-\cot(x). So we need to evaluate cot(x)-\cot(x) from π6\frac{\pi}{6} to π4\frac{\pi}{4}.
  7. Calculate the antiderivative at the bounds: Calculate the antiderivative at the bounds.\newlinecot(π4)=1-\cot(\frac{\pi}{4}) = -1 (since cot(π4)=1\cot(\frac{\pi}{4}) = 1)\newlinecot(π6)=3-\cot(\frac{\pi}{6}) = -\sqrt{3} (since cot(π6)=3\cot(\frac{\pi}{6}) = \sqrt{3})
  8. Find the difference of the antiderivative at the bounds: Find the difference of the antiderivative at the bounds.\newline(1)(3)=1+3(-1) - (-\sqrt{3}) = -1 + \sqrt{3}
  9. Multiply by the factor from step 55: Multiply by the factor from step 55.\newlineAverage value = (12/π)(1+3)(12/\pi) * (-1 + \sqrt{3})\newlineAverage value = (12/π)3(12/π)(12/\pi) * \sqrt{3} - (12/\pi)
  10. Simplify the expression: Simplify the expression.\newlineThe average value cannot be simplified further in terms of exact values. So, the average value of csc2x\csc^2 x over the interval [π6,π4][\frac{\pi}{6}, \frac{\pi}{4}] is 12π312π\frac{12}{\pi} \cdot \sqrt{3} - \frac{12}{\pi}.

More problems from Sin, cos, and tan of special angles