Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
A parabola opening up or down has vertex
(
0
,
−
2
)
(0,-2)
(
0
,
−
2
)
and passes through
(
−
8
,
6
)
(-8,6)
(
−
8
,
6
)
. Write its equation in vertex form.
\newline
Simplify any
fractions
.
View step-by-step help
Home
Math Problems
Algebra 2
Write a quadratic function from its vertex and another point
Full solution
Q.
A parabola opening up or down has vertex
(
0
,
−
2
)
(0,-2)
(
0
,
−
2
)
and passes through
(
−
8
,
6
)
(-8,6)
(
−
8
,
6
)
. Write its equation in vertex form.
\newline
Simplify any fractions.
Vertex Form:
What is the vertex form of the parabola?
\newline
Vertex form of parabola:
y
=
a
(
x
−
h
)
2
+
k
y = a(x - h)^2 + k
y
=
a
(
x
−
h
)
2
+
k
Equation at Vertex:
What is the equation of a parabola with a vertex at
(
0
,
−
2
)
(0, -2)
(
0
,
−
2
)
?
\newline
Substitute
0
0
0
for
h
h
h
and
−
2
-2
−
2
for
k
k
k
in vertex form.
\newline
y
=
a
(
x
−
0
)
2
+
(
−
2
)
y = a(x - 0)^2 + (-2)
y
=
a
(
x
−
0
)
2
+
(
−
2
)
\newline
y
=
a
x
2
−
2
y = ax^2 - 2
y
=
a
x
2
−
2
Substitute Values:
y
=
a
x
2
−
2
y = ax^2 - 2
y
=
a
x
2
−
2
\newline
Replace the variables with
(
−
8
,
6
)
(-8, 6)
(
−
8
,
6
)
in the equation.
\newline
Substitute
−
8
-8
−
8
for
x
x
x
and
6
6
6
for
y
y
y
.
\newline
6
=
a
(
−
8
)
2
−
2
6 = a(-8)^2 - 2
6
=
a
(
−
8
)
2
−
2
\newline
6
=
64
a
−
2
6 = 64a - 2
6
=
64
a
−
2
Solve for
a
a
a
:
6
=
64
a
−
2
6 = 64a - 2
6
=
64
a
−
2
\newline
Solve for
a
a
a
.
\newline
6
=
64
a
−
2
6 = 64a - 2
6
=
64
a
−
2
\newline
8
=
64
a
8 = 64a
8
=
64
a
\newline
8
64
=
a
\frac{8}{64} = a
64
8
=
a
\newline
1
8
=
a
\frac{1}{8} = a
8
1
=
a
Equation with
a
=
1
8
a=\frac{1}{8}
a
=
8
1
:
y
=
a
x
2
−
2
y = ax^2 - 2
y
=
a
x
2
−
2
\newline
What is the equation of parabola if
a
=
1
8
a = \frac{1}{8}
a
=
8
1
?
\newline
Substitute
1
8
\frac{1}{8}
8
1
for
a
a
a
.
\newline
y
=
(
1
8
)
x
2
−
2
y = \left(\frac{1}{8}\right)x^2 - 2
y
=
(
8
1
)
x
2
−
2
\newline
Vertex form of parabola:
y
=
(
1
8
)
x
2
−
2
y = \left(\frac{1}{8}\right)x^2 - 2
y
=
(
8
1
)
x
2
−
2
More problems from Write a quadratic function from its vertex and another point
Question
Solve by completing the square.
\newline
m
2
−
10
m
−
29
=
0
m^2 - 10m - 29 = 0
m
2
−
10
m
−
29
=
0
\newline
Write your answers as integers, proper or improper fractions in simplest form, or decimals rounded to the nearest hundredth.
\newline
`m` = ____ or `m` = _____
Get tutor help
Posted 9 months ago
Question
Find
g
(
x
)
g(x)
g
(
x
)
, where
g
(
x
)
g(x)
g
(
x
)
is the translation
5
5
5
units up of
f
(
x
)
=
x
2
f(x)=x^2
f
(
x
)
=
x
2
.
\newline
Write your answer in the form
a
(
x
–
h
)
2
+
k
a(x–h)^2+k
a
(
x
–
h
)
2
+
k
, where
a
a
a
,
h
h
h
, and
k
k
k
are integers.
\newline
g
(
x
)
=
g(x)=
g
(
x
)
=
____
Get tutor help
Posted 9 months ago
Question
What is the range of this quadratic function?
\newline
y
=
x
2
−
4
x
+
4
y = x^2 - 4x + 4
y
=
x
2
−
4
x
+
4
\newline
Choices:
\newline
{
y
∣
y
≥
2
}
\left\{y \mid y \geq 2\right\}
{
y
∣
y
≥
2
}
\newline
{
y
∣
y
≤
0
}
\left\{y \mid y \leq 0\right\}
{
y
∣
y
≤
0
}
\newline
{
y
∣
y
≥
0
}
\left\{y \mid y \geq 0\right\}
{
y
∣
y
≥
0
}
\newline
all real numbers
\text{all real numbers}
all real numbers
Get tutor help
Posted 6 months ago
Question
Write the equation of the parabola that passes through the points
(
1
,
0
)
(1,0)
(
1
,
0
)
,
(
2
,
0
)
(2,0)
(
2
,
0
)
, and
(
3
,
–
16
)
(3,\text{–}16)
(
3
,
–
16
)
. Write your answer in the form
y
=
a
(
x
–
p
)
(
x
–
q
)
y = a(x – p)(x – q)
y
=
a
(
x
–
p
)
(
x
–
q
)
, where
a
a
a
,
p
p
p
, and
q
q
q
are integers, decimals, or simplified fractions.
\newline
______
Get tutor help
Posted 6 months ago
Question
Complete the square. Fill in the number that makes the polynomial a perfect-square quadratic.
\newline
f
2
+
8
f
+
_
_
_
_
_
f^2 + 8f + \_\_\_\_\_
f
2
+
8
f
+
_____
Get tutor help
Posted 6 months ago
Question
Solve for
h
h
h
.
\newline
h
2
+
39
h
=
0
h^2 + 39h = 0
h
2
+
39
h
=
0
\newline
\newline
Write each solution as an integer, proper fraction, or improper fraction in simplest form. If there are multiple solutions, separate them with commas.
\newline
h
=
h =
h
=
____
\newline
Get tutor help
Posted 6 months ago
Question
Write a quadratic function with zeros
−
9
-9
−
9
and
−
7
-7
−
7
.
\newline
Write your answer using the variable
x
x
x
and in standard form with a leading coefficient of
1
1
1
.
\newline
f
(
x
)
=
_
_
_
_
_
f(x) = \_\_\_\_\_
f
(
x
)
=
_____
Get tutor help
Posted 6 months ago
Question
Find the equation of the axis of symmetry for the parabola
y
=
x
2
y = x^2
y
=
x
2
.
\newline
Simplify any numbers and write them as proper fractions, improper fractions, or integers.
\newline
‾
\underline{\hspace{3cm}}
Get tutor help
Posted 6 months ago
Question
Find
g
(
x
)
g(x)
g
(
x
)
, where
g
(
x
)
g(x)
g
(
x
)
is the translation
8
8
8
units up of
f
(
x
)
=
x
2
f(x) = x^2
f
(
x
)
=
x
2
.
\newline
Write your answer in the form
a
(
x
–
h
)
2
+
k
a(x – h)^2 + k
a
(
x
–
h
)
2
+
k
, where
a
a
a
,
h
h
h
, and
k
k
k
are integers.
\newline
g
(
x
)
=
g(x) =
g
(
x
)
=
______
\newline
Get tutor help
Posted 6 months ago
Question
Solve for
x
x
x
.
\newline
x
2
=
1
x^2 = 1
x
2
=
1
\newline
\newline
Write your answer in simplified, rationalized form.
\newline
x
=
x =
x
=
______ or
x
=
x =
x
=
______
\newline
Get tutor help
Posted 6 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant