Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

A parabola opening up or down has vertex (0,2)(0,2) and passes through (12,11)(12,11). Write its equation in vertex form.\newlineSimplify any fractions.\newline______

Full solution

Q. A parabola opening up or down has vertex (0,2)(0,2) and passes through (12,11)(12,11). Write its equation in vertex form.\newlineSimplify any fractions.\newline______
  1. Vertex Form: What is the vertex form of the parabola?\newlineVertex form of parabola: y=a(xh)2+ky = a(x - h)^2 + k
  2. Equation at Vertex: What is the equation of a parabola with a vertex at (0,2)(0, 2)?\newlineSubstitute 00 for hh and 22 for kk in vertex form.\newliney=a(x0)2+2y = a(x - 0)^2 + 2\newliney=ax2+2y = ax^2 + 2
  3. Substitute Values: y=ax2+2y = ax^2 + 2\newlineReplace the variables with (12,11)(12, 11) in the equation.\newlineSubstitute 1212 for xx and 1111 for yy.\newline11=a(12)2+211 = a(12)^2 + 2\newline11=144a+211 = 144a + 2
  4. Solve for aa: 11=144a+211 = 144a + 2\newlineSolve for aa.\newline112=144a11 - 2 = 144a\newline9=144a9 = 144a\newline9144=a\frac{9}{144} = a\newline116=a\frac{1}{16} = a
  5. Equation with a=116a=\frac{1}{16}: y=ax2+2y = ax^2 + 2\newlineWhat is the equation of the parabola if a=116a = \frac{1}{16}?\newlineSubstitute 116\frac{1}{16} for aa.\newliney=(116)x2+2y = \left(\frac{1}{16}\right)x^2 + 2\newlineVertex form of parabola: y=(116)x2+2y = \left(\frac{1}{16}\right)x^2 + 2

More problems from Write a quadratic function from its vertex and another point