Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

a)lne2.50lne a) \ln e^{2.50}-\ln \sqrt{e}

Full solution

Q. a)lne2.50lne a) \ln e^{2.50}-\ln \sqrt{e}
  1. Apply Power Rule: Apply the power rule of logarithms to lne2.50\ln e^{2.50}. \newlinelne2.50=2.50×lne\ln e^{2.50} = 2.50 \times \ln e\newlineSince lne=1\ln e = 1, this simplifies to:\newlinelne2.50=2.50×1=2.50\ln e^{2.50} = 2.50 \times 1 = 2.50
  2. Apply Logarithm Property: Apply the property of logarithms to lne\ln \sqrt{e}. lne\ln \sqrt{e} is equivalent to lne(1/2)\ln e^{(1/2)}. Using the power rule of logarithms, this becomes: lne(1/2)=(1/2)lne\ln e^{(1/2)} = (1/2) \cdot \ln e Since lne=1\ln e = 1, this simplifies to: lne(1/2)=(1/2)1=0.5\ln e^{(1/2)} = (1/2) \cdot 1 = 0.5
  3. Subtract Logarithmic Expressions: Subtract the two logarithmic expressions.\newlinelne2.50lne=2.500.5\ln e^{2.50} - \ln \sqrt{e} = 2.50 - 0.5\newlinePerform the subtraction:\newline2.500.5=2.002.50 - 0.5 = 2.00

More problems from Simplify radical expressions involving fractions