Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

A line in the xyxy-plane passes through the origin and has a slope of 17\frac{1}{7}. Which of the following points lies on the line?\newlineA) (0,7)(0, 7)\newlineB) (1,7)(1, 7)\newlineC) (7,7)(7, 7)\newlineD) (14,2)(14, 2)

Full solution

Q. A line in the xyxy-plane passes through the origin and has a slope of 17\frac{1}{7}. Which of the following points lies on the line?\newlineA) (0,7)(0, 7)\newlineB) (1,7)(1, 7)\newlineC) (7,7)(7, 7)\newlineD) (14,2)(14, 2)
  1. Identify Equation: Step 11: Identify the equation of the line using the slope and the fact that it passes through the origin. The slope-intercept form of a line is y=mx+by = mx + b. Since the slope (m)(m) is 17\frac{1}{7} and it passes through the origin (b=0)(b=0), the equation of the line is y=(17)xy = \left(\frac{1}{7}\right)x.
  2. Check Point A: Step 22: Substitute the xx and yy values of each point into the equation y=17xy = \frac{1}{7}x to check if they satisfy the equation.\newlineFor point A (0,7)(0, 7):\newliney=170=0y = \frac{1}{7}\cdot0 = 0\newlineCheck: 707 \neq 0
  3. Check Point B: Step 33: Check point B (1,7)(1, 7):\newliney=(17)1=17y = (\frac{1}{7})\cdot1 = \frac{1}{7}\newlineCheck: 7177 \neq \frac{1}{7}
  4. Check Point C: Step 44: Check point C (7,7)(7, 7):\newliney=(17)7=1y = (\frac{1}{7})*7 = 1\newlineCheck: 717 \neq 1
  5. Check Point D: Step 55: Check point D (14,2)(14, 2):\newliney=(17)14=2y = (\frac{1}{7})\cdot14 = 2\newlineCheck: 2=22 = 2

More problems from Find a missing coordinate using slope