Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

A curve is defined by the parametric equations 
x(t)=t^(2)+9t and 
y(t)=-3t^(2)-10 t+4. Find 
(dy)/(dx).
Answer:

A curve is defined by the parametric equations x(t)=t2+9t x(t)=t^{2}+9 t and y(t)=3t210t+4 y(t)=-3 t^{2}-10 t+4 . Find dydx \frac{d y}{d x} .\newlineAnswer:

Full solution

Q. A curve is defined by the parametric equations x(t)=t2+9t x(t)=t^{2}+9 t and y(t)=3t210t+4 y(t)=-3 t^{2}-10 t+4 . Find dydx \frac{d y}{d x} .\newlineAnswer:
  1. Find dxdt\frac{dx}{dt}: To find dydx\frac{dy}{dx} for parametric equations, we first need to find dxdt\frac{dx}{dt} and dydt\frac{dy}{dt} separately.
  2. Find dydt\frac{dy}{dt}: The derivative of x(t)x(t) with respect to tt is dxdt\frac{dx}{dt}. We calculate this by differentiating x(t)=t2+9tx(t)=t^2+9t with respect to tt.
    dxdt=d(t2)dt+d(9t)dt=2t+9\frac{dx}{dt} = \frac{d(t^2)}{dt} + \frac{d(9t)}{dt} = 2t + 9.
  3. Calculate dydx\frac{dy}{dx}: Similarly, the derivative of y(t)y(t) with respect to tt is dydt\frac{dy}{dt}. We calculate this by differentiating y(t)=3t210t+4y(t)=-3t^2-10t+4 with respect to tt.
    dydt=d(3t2)dt+d(10t)dt+d(4)dt=6t10\frac{dy}{dt} = \frac{d(-3t^2)}{dt} + \frac{d(-10t)}{dt} + \frac{d(4)}{dt} = -6t - 10.
  4. Simplify dydx\frac{dy}{dx}: Now, we find dydx\frac{dy}{dx} by dividing dydt\frac{dy}{dt} by dxdt\frac{dx}{dt}.dydx=dydtdxdt=6t102t+9.\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{-6t - 10}{2t + 9}.
  5. Simplify dydx\frac{dy}{dx}: Now, we find dydx\frac{dy}{dx} by dividing dydt\frac{dy}{dt} by dxdt\frac{dx}{dt}.dydx=dydtdxdt=6t102t+9\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{-6t - 10}{2t + 9}.We simplify the expression for dydx\frac{dy}{dx} if possible. In this case, the expression is already simplified.

More problems from Simplify expressions using trigonometric identities