Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

A curve is defined by the parametric equations 
x(t)=7t^(3) and 
y(t)=t^(2)-2t-5. Find 
(dy)/(dx).
Answer:

A curve is defined by the parametric equations x(t)=7t3 x(t)=7 t^{3} and y(t)=t22t5 y(t)=t^{2}-2 t-5 . Find dydx \frac{d y}{d x} .\newlineAnswer:

Full solution

Q. A curve is defined by the parametric equations x(t)=7t3 x(t)=7 t^{3} and y(t)=t22t5 y(t)=t^{2}-2 t-5 . Find dydx \frac{d y}{d x} .\newlineAnswer:
  1. Identify Derivatives: To find (dydx)(\frac{dy}{dx}), we first need to find the derivatives of x(t)x(t) and y(t)y(t) with respect to tt, which are denoted as dxdt\frac{dx}{dt} and dydt\frac{dy}{dt}, respectively.
  2. Calculate dxdt\frac{dx}{dt}: Calculate dxdt\frac{dx}{dt}, which is the derivative of x(t)x(t) with respect to tt.
    dxdt=d(7t3)dt\frac{dx}{dt} = \frac{d(7t^3)}{dt}
    dxdt=21t2\frac{dx}{dt} = 21t^2
  3. Calculate dydt\frac{dy}{dt}: Calculate dydt\frac{dy}{dt}, which is the derivative of y(t)y(t) with respect to tt.
    dydt=d(t22t5)dt\frac{dy}{dt} = \frac{d(t^2 - 2t - 5)}{dt}
    dydt=2t2\frac{dy}{dt} = 2t - 2
  4. Find (dydx):</b>Now,tofind$(dydx),wedivide$dydt(\frac{dy}{dx}):</b> Now, to find \$(\frac{dy}{dx}), we divide \$\frac{dy}{dt} by dxdt\frac{dx}{dt}.\newline(\frac{dy}{dx}) = \frac{(\frac{dy}{dt})}{(\frac{dx}{dt})}\(\newline(\frac{dy}{dx}) = \frac{(\(2\)t - \(2\))}{(\(21\)t^\(2\))}
  5. Simplify the Expression: Simplify the expression for \((\frac{dy}{dx}).(dydx)=2t221t2(\frac{dy}{dx}) = \frac{2t - 2}{21t^2}(dydx)=2(t1)21t2(\frac{dy}{dx}) = \frac{2(t - 1)}{21t^2}

More problems from Find the vertex of the transformed function