Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

A curve is defined by the parametric equations 
x(t)=4t^(3) and 
y(t)=7sin(-8t). Find 
(dy)/(dx).
Answer:

A curve is defined by the parametric equations x(t)=4t3 x(t)=4 t^{3} and y(t)=7sin(8t) y(t)=7 \sin (-8 t) . Find dydx \frac{d y}{d x} .\newlineAnswer:

Full solution

Q. A curve is defined by the parametric equations x(t)=4t3 x(t)=4 t^{3} and y(t)=7sin(8t) y(t)=7 \sin (-8 t) . Find dydx \frac{d y}{d x} .\newlineAnswer:
  1. Find dxdt\frac{dx}{dt}: To find the derivative of yy with respect to xx, we need to find dydt\frac{dy}{dt} and dxdt\frac{dx}{dt} and then divide dydt\frac{dy}{dt} by dxdt\frac{dx}{dt}. First, let's find dxdt\frac{dx}{dt}. dxdt=d(4t3)dt\frac{dx}{dt} = \frac{d(4t^3)}{dt} dxdt=12t2\frac{dx}{dt} = 12t^2
  2. Find dydt\frac{dy}{dt}: Now, let's find dydt\frac{dy}{dt}.
    dydt=d(7sin(8t))dt\frac{dy}{dt} = \frac{d(7\sin(-8t))}{dt}
    dydt=7cos(8t)(8)\frac{dy}{dt} = 7 \cdot \cos(-8t) \cdot (-8)
    dydt=56cos(8t)\frac{dy}{dt} = -56\cos(-8t)
  3. Calculate dydx\frac{dy}{dx}: Now we divide dydt\frac{dy}{dt} by dxdt\frac{dx}{dt} to find dydx\frac{dy}{dx}.
    dydx=dydtdxdt\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}
    dydx=56cos(8t)12t2\frac{dy}{dx} = \frac{-56\cos(-8t)}{12t^2}
    dydx=56cos(8t)12t2\frac{dy}{dx} = \frac{-56\cos(-8t)}{12t^2}
    dydx=14cos(8t)3t2\frac{dy}{dx} = \frac{-14\cos(-8t)}{3t^2}

More problems from Write a quadratic function from its x-intercepts and another point