Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

A curve is defined by the parametric equations 
x(t)=-3sin(4t) and 
y(t)=-2e^(10 t). Find 
(dy)/(dx).
Answer:

A curve is defined by the parametric equations x(t)=3sin(4t) x(t)=-3 \sin (4 t) and y(t)=2e10t y(t)=-2 e^{10 t} . Find dydx \frac{d y}{d x} .\newlineAnswer:

Full solution

Q. A curve is defined by the parametric equations x(t)=3sin(4t) x(t)=-3 \sin (4 t) and y(t)=2e10t y(t)=-2 e^{10 t} . Find dydx \frac{d y}{d x} .\newlineAnswer:
  1. Find dx/dt: To find the derivative of yy with respect to xx (dydx\frac{dy}{dx}) for parametric equations, we need to find dydt\frac{dy}{dt} and dxdt\frac{dx}{dt} separately and then divide dydt\frac{dy}{dt} by dxdt\frac{dx}{dt}. First, let's find dxdt\frac{dx}{dt}. dxdt=ddt[3sin(4t)]\frac{dx}{dt} = \frac{d}{dt} [-3\sin(4t)] Using the chain rule, we get: dxdt=3ddt[sin(4t)]\frac{dx}{dt} = -3 \cdot \frac{d}{dt} [\sin(4t)] xx00 xx11
  2. Find dydt\frac{dy}{dt}: Now, let's find dydt\frac{dy}{dt}.
    dydt=ddt[2e10t]\frac{dy}{dt} = \frac{d}{dt} [-2e^{10t}]
    Using the exponential rule, we get:
    dydt=2ddt[e10t]\frac{dy}{dt} = -2 \cdot \frac{d}{dt} [e^{10t}]
    dydt=2e10t10\frac{dy}{dt} = -2 \cdot e^{10t} \cdot 10
    dydt=20e10t\frac{dy}{dt} = -20e^{10t}
  3. Find dydx\frac{dy}{dx}: With dxdt\frac{dx}{dt} and dydt\frac{dy}{dt} calculated, we can now find dydx\frac{dy}{dx}.
    dydx=dydtdxdt\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}
    Substitute the values we found for dydt\frac{dy}{dt} and dxdt\frac{dx}{dt}:
    dydx=20e10t12cos(4t)\frac{dy}{dx} = \frac{-20e^{10t}}{-12\cos(4t)}
    Simplify the expression:
    dydx=2012e10tcos(4t)\frac{dy}{dx} = \frac{20}{12} \cdot \frac{e^{10t}}{\cos(4t)}
    dydx=53e10tcos(4t)\frac{dy}{dx} = \frac{5}{3} \cdot \frac{e^{10t}}{\cos(4t)}

More problems from Write a quadratic function from its x-intercepts and another point