Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

A curve is defined by the parametric equations 
x(t)=3sin(3t) and 
y(t)=-9t^(3)-5t^(2)+9t. Find 
(dy)/(dx).
Answer:

A curve is defined by the parametric equations x(t)=3sin(3t) x(t)=3 \sin (3 t) and y(t)=9t35t2+9t y(t)=-9 t^{3}-5 t^{2}+9 t . Find dydx \frac{d y}{d x} .\newlineAnswer:

Full solution

Q. A curve is defined by the parametric equations x(t)=3sin(3t) x(t)=3 \sin (3 t) and y(t)=9t35t2+9t y(t)=-9 t^{3}-5 t^{2}+9 t . Find dydx \frac{d y}{d x} .\newlineAnswer:
  1. Find dxdt\frac{dx}{dt}: To find dydx\frac{dy}{dx} for parametric equations, we need to find dydt\frac{dy}{dt} and dxdt\frac{dx}{dt} and then divide dydt\frac{dy}{dt} by dxdt\frac{dx}{dt}. First, let's find dxdt\frac{dx}{dt}. dxdt=ddt[3sin(3t)]\frac{dx}{dt} = \frac{d}{dt} [3\sin(3t)] Using the chain rule, we get dxdt=3cos(3t)ddt[3t]\frac{dx}{dt} = 3 \cdot \cos(3t) \cdot \frac{d}{dt} [3t] dxdt=3cos(3t)3\frac{dx}{dt} = 3 \cdot \cos(3t) \cdot 3 dydx\frac{dy}{dx}00
  2. Find dydt\frac{dy}{dt}: Now, let's find dydt\frac{dy}{dt}.
    dydt=ddt[9t35t2+9t]\frac{dy}{dt} = \frac{d}{dt} [-9t^{3} - 5t^{2} + 9t]
    Using the power rule, we get dydt=27t210t+9\frac{dy}{dt} = -27t^{2} - 10t + 9
  3. Calculate dydx:\frac{dy}{dx}: Now we have dxdt\frac{dx}{dt} and dydt,\frac{dy}{dt}, we can find dydx\frac{dy}{dx} by dividing dydt\frac{dy}{dt} by dxdt.\frac{dx}{dt}.dydx=dydtdxdt\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}dydx=27t210t+99cos(3t)\frac{dy}{dx} = \frac{-27t^{2} - 10t + 9}{9\cos(3t)}

More problems from Write a quadratic function from its x-intercepts and another point