Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

A curve is defined by the parametric equations 
x(t)=-10 sin(10 t) and 
y(t)=3t^(2). Find 
(dy)/(dx).
Answer:

A curve is defined by the parametric equations x(t)=10sin(10t) x(t)=-10 \sin (10 t) and y(t)=3t2 y(t)=3 t^{2} . Find dydx \frac{d y}{d x} .\newlineAnswer:

Full solution

Q. A curve is defined by the parametric equations x(t)=10sin(10t) x(t)=-10 \sin (10 t) and y(t)=3t2 y(t)=3 t^{2} . Find dydx \frac{d y}{d x} .\newlineAnswer:
  1. Find dxdt\frac{dx}{dt}: To find dydx\frac{dy}{dx} for parametric equations, we need to find dydt\frac{dy}{dt} and dxdt\frac{dx}{dt} separately and then divide dydt\frac{dy}{dt} by dxdt\frac{dx}{dt}.
  2. Find dydt\frac{dy}{dt}: First, let's find dxdt\frac{dx}{dt}. The derivative of x(t)=10sin(10t)x(t)=-10 \sin(10 t) with respect to tt is found using the chain rule.\newlinedxdt=ddt[10sin(10t)]=10cos(10t)10=100cos(10t)\frac{dx}{dt} = \frac{d}{dt} [-10 \sin(10 t)] = -10 \cdot \cos(10 t) \cdot 10 = -100 \cos(10 t)
  3. Divide to find dydx\frac{dy}{dx}: Next, we find dydt\frac{dy}{dt}. The derivative of y(t)=3t2y(t)=3t^{2} with respect to tt is found using the power rule.dydt=ddt[3t2]=23t21=6t\frac{dy}{dt} = \frac{d}{dt} [3t^{2}] = 2 \cdot 3 \cdot t^{2-1} = 6t
  4. Simplify dydx\frac{dy}{dx}: Now we divide dydt\frac{dy}{dt} by dxdt\frac{dx}{dt} to find dydx\frac{dy}{dx}.dydx=dydtdxdt=6t100cos(10t)\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{6t}{-100 \cos(10 t)}
  5. Simplify dydx\frac{dy}{dx}: Now we divide dydt\frac{dy}{dt} by dxdt\frac{dx}{dt} to find dydx\frac{dy}{dx}.
    dydx=dydtdxdt=6t100cos(10t)\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{6t}{-100 \cos(10 t)} We simplify the expression for dydx\frac{dy}{dx}.
    dydx=6t100cos(10t)=3t50cos(10t)\frac{dy}{dx} = \frac{-6t}{100 \cos(10 t)} = \frac{-3t}{50 \cos(10 t)}

More problems from Transformations of quadratic functions