Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find factors of quadratic equation:
3x^(4)+10x^(2)+8

Find factors of quadratic equation:\newline3x4+10x2+83x^{4}+10x^{2}+8

Full solution

Q. Find factors of quadratic equation:\newline3x4+10x2+83x^{4}+10x^{2}+8
  1. Identify Form and Simplify: Identify the form of the polynomial and simplify if possible.\newlineWe have 3x4+10x2+83x^4 + 10x^2 + 8. Notice it's a quadratic in form of x2x^2.\newlineLet u=x2u = x^2. Then the polynomial becomes 3u2+10u+83u^2 + 10u + 8.
  2. Factor Quadratic: Factor the quadratic 3u2+10u+83u^2 + 10u + 8. We need two numbers that multiply to 3×8=243\times8=24 and add up to 1010. The numbers 66 and 44 work because 6×4=246\times4=24 and 6+4=106+4=10. So, 3u2+10u+83u^2 + 10u + 8 factors as (3u+4)(u+2)(3u + 4)(u + 2).
  3. Substitute Back: Substitute back x2x^2 for uu. Replace uu with x2x^2 in the factored form: (3x2+4)(x2+2)(3x^2 + 4)(x^2 + 2).