Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which of the following is equivalent to 
-8x^(2)-8xy+12y^(2) ?
Choose 1 answer:
(A) 
-4(2x^(2)-2xy-3y^(2))
(B) 
-4(2x^(2)-2xy+3y^(2))
(C) 
-4(2x^(2)+2xy-3y^(2))
(D) 
-4(2x^(2)+2xy+3y^(2))

Which of the following is equivalent to 8x28xy+12y2 -8 x^{2}-8 x y+12 y^{2} ?\newlineChoose 11 answer:\newline(A) 4(2x22xy3y2) -4\left(2 x^{2}-2 x y-3 y^{2}\right) \newline(B) 4(2x22xy+3y2) -4\left(2 x^{2}-2 x y+3 y^{2}\right) \newline(C) 4(2x2+2xy3y2) -4\left(2 x^{2}+2 x y-3 y^{2}\right) \newline(D) 4(2x2+2xy+3y2) -4\left(2 x^{2}+2 x y+3 y^{2}\right)

Full solution

Q. Which of the following is equivalent to 8x28xy+12y2 -8 x^{2}-8 x y+12 y^{2} ?\newlineChoose 11 answer:\newline(A) 4(2x22xy3y2) -4\left(2 x^{2}-2 x y-3 y^{2}\right) \newline(B) 4(2x22xy+3y2) -4\left(2 x^{2}-2 x y+3 y^{2}\right) \newline(C) 4(2x2+2xy3y2) -4\left(2 x^{2}+2 x y-3 y^{2}\right) \newline(D) 4(2x2+2xy+3y2) -4\left(2 x^{2}+2 x y+3 y^{2}\right)
  1. Factor Out GCF: We need to factor out the greatest common factor from the expression 8x28xy+12y2-8x^{2}-8xy+12y^{2}.\newlineThe greatest common factor is 4-4.\newlineFactor out 4-4 from each term in the expression.
  2. Rewrite Expression: After factoring out 4-4, we rewrite the expression as:\newline4(2x2+2xy3y2)-4(2x^{2} + 2xy - 3y^{2}).\newlineHowever, we need to be careful with the signs. The original expression has a negative sign in front of the xyxy term, so we should have:\newline4(2x22xy+3y2)-4(2x^{2} - 2xy + 3y^{2}).
  3. Check Answer Choices: Now, let's check each answer choice to see which one matches our factored expression:\newline(A) 4(2x22xy3y2)-4(2x^{2}-2xy-3y^{2}) does not match because the sign in front of 3y23y^{2} is negative.\newline(B) 4(2x22xy+3y2)-4(2x^{2}-2xy+3y^{2}) matches our factored expression.\newline(C) 4(2x2+2xy3y2)-4(2x^{2}+2xy-3y^{2}) does not match because the sign in front of 2xy2xy is positive.\newline(D) 4(2x2+2xy+3y2)-4(2x^{2}+2xy+3y^{2}) does not match because both signs in front of 2xy2xy and 3y23y^{2} are positive.

More problems from Identify equivalent linear expressions I