Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which of the following is equivalent to 
(((3x)/(2)))/(((3)/(x)+2)) ?
Choose 1 answer:
(A) 
(9)/(4)
(B) 
(3x+2)/(9)
(C) 
(9x^(2))/(4)
(D) 
(3x^(2))/(6+4x)

Which of the following is equivalent to (3x2)(3x+2) \frac{\left(\frac{3 x}{2}\right)}{\left(\frac{3}{x}+2\right)} ?\newlineChoose 11 answer:\newline(A) 94 \frac{9}{4} \newline(B) 3x+29 \frac{3 x+2}{9} \newline(C) 9x24 \frac{9 x^{2}}{4} \newline(D) 3x26+4x \frac{3 x^{2}}{6+4 x}

Full solution

Q. Which of the following is equivalent to (3x2)(3x+2) \frac{\left(\frac{3 x}{2}\right)}{\left(\frac{3}{x}+2\right)} ?\newlineChoose 11 answer:\newline(A) 94 \frac{9}{4} \newline(B) 3x+29 \frac{3 x+2}{9} \newline(C) 9x24 \frac{9 x^{2}}{4} \newline(D) 3x26+4x \frac{3 x^{2}}{6+4 x}
  1. Simplify denominator of complex fraction: Simplify the denominator of the complex fraction.\newlineThe denominator is (3x)+2(\frac{3}{x}) + 2. To combine these terms, we need a common denominator, which is xx. So we rewrite the terms with a common denominator:\newline(3x)+2=(3x)+(2xx)(\frac{3}{x}) + 2 = (\frac{3}{x}) + (\frac{2x}{x})
  2. Combine terms in denominator: Combine the terms in the denominator.\newlineNow that we have a common denominator, we can combine the terms:\newline(3x)+(2xx)=3+2xx(\frac{3}{x}) + (\frac{2x}{x}) = \frac{3 + 2x}{x}
  3. Rewrite complex fraction as division: Rewrite the complex fraction as a division.\newlineThe original expression 3x23x+2\frac{\frac{3x}{2}}{\frac{3}{x}+2} can now be written as:\newline3x2\frac{3x}{2} ÷\div 3+2xx\frac{3 + 2x}{x}
  4. Divide by fraction by multiplying by reciprocal: Divide by a fraction by multiplying by its reciprocal.\newlineTo divide by a fraction, we multiply by its reciprocal. The reciprocal of (3+2xx)(\frac{3 + 2x}{x}) is (x3+2x)(\frac{x}{3 + 2x}):\newline(3x2)(x3+2x)(\frac{3x}{2}) \cdot (\frac{x}{3 + 2x})
  5. Simplify expression: Simplify the expression.\newlineNow we multiply the numerators and the denominators:\newline(3x×x)/(2×(3+2x))(3x \times x) / (2 \times (3 + 2x))\newlineThis simplifies to:\newline(3x2)/(6+4x)(3x^2) / (6 + 4x)

More problems from Identify equivalent linear expressions I