Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which of the following is equivalent to 
2x^(3)+4x ?
Choose 1 answer:
(A) 
2x(x^(2)+2)
(B) 
2x(x^(2)+2x)
(C) 
2x(x^(2)+4x)
(D) 
2x(x+2)

Which of the following is equivalent to 2x3+4x 2 x^{3}+4 x ?\newlineChoose 11 answer:\newline(A) 2x(x2+2) 2 x\left(x^{2}+2\right) \newline(B) 2x(x2+2x) 2 x\left(x^{2}+2 x\right) \newline(C) 2x(x2+4x) 2 x\left(x^{2}+4 x\right) \newline(D) 2x(x+2) 2 x(x+2)

Full solution

Q. Which of the following is equivalent to 2x3+4x 2 x^{3}+4 x ?\newlineChoose 11 answer:\newline(A) 2x(x2+2) 2 x\left(x^{2}+2\right) \newline(B) 2x(x2+2x) 2 x\left(x^{2}+2 x\right) \newline(C) 2x(x2+4x) 2 x\left(x^{2}+4 x\right) \newline(D) 2x(x+2) 2 x(x+2)
  1. Factor out GCF: Factor out the greatest common factor (GCF) from the expression 2x3+4x2x^{3}+4x.\newlineThe GCF of 2x32x^{3} and 4x4x is 2x2x, since both terms are divisible by 2x2x.
  2. Divide by GCF: Divide each term by the GCF to find the remaining factors.\newline2x3÷2x=x22x^{3} \div 2x = x^{2}\newline4x÷2x=24x \div 2x = 2
  3. Write as product: Write the original expression as a product of the GCF and the remaining factors.\newline2x3+4x=2x(x2+2)2x^{3}+4x = 2x(x^{2}+2)

More problems from Identify equivalent linear expressions