Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which of the following expressions is equivalent to 
6root(3)(640f^(2)g^(9)) ?
Choose 1 answer:
(A) 
60 fg^(4)root(3)(8g)
(B) 
60g^(3)root(3)(4f^(2))
(c) 
48 fg^(4)root(3)(10 g)
(D) 
24g^(3)root(3)(10f^(2))

Which of the following expressions is equivalent to 6640f2g93 6 \sqrt[3]{640 f^{2} g^{9}} ?\newlineChoose 11 answer:\newline(A) 60fg48g3 60 f g^{4} \sqrt[3]{8 g} \newline(B) 60g34f23 60 g^{3} \sqrt[3]{4 f^{2}} \newline(C) 48fg410g3 48 f g^{4} \sqrt[3]{10 g} \newline(D) 24g310f23 24 g^{3} \sqrt[3]{10 f^{2}}

Full solution

Q. Which of the following expressions is equivalent to 6640f2g93 6 \sqrt[3]{640 f^{2} g^{9}} ?\newlineChoose 11 answer:\newline(A) 60fg48g3 60 f g^{4} \sqrt[3]{8 g} \newline(B) 60g34f23 60 g^{3} \sqrt[3]{4 f^{2}} \newline(C) 48fg410g3 48 f g^{4} \sqrt[3]{10 g} \newline(D) 24g310f23 24 g^{3} \sqrt[3]{10 f^{2}}
  1. Simplify Expression: First, let's simplify the expression inside the cube root. 640640 can be factored into prime factors: 640=27×5640 = 2^7 \times 5. The expression becomes 27×5×f2×g93\sqrt[3]{2^7 \times 5 \times f^2 \times g^9}.
  2. Split into Separate Roots: We can split the cube root into separate roots for each factor: 6×273×53×f23×g93.6 \times \sqrt[3]{2^7} \times \sqrt[3]{5} \times \sqrt[3]{f^2} \times \sqrt[3]{g^9}.
  3. Simplify Each Cube Root: Now, we simplify each cube root separately. For 273\sqrt[3]{2^7}, we can take out 222^2 (which is 44) from the cube root because 262^6 is a perfect cube. This leaves us with 6×4×23×53×f23×g936 \times 4 \times \sqrt[3]{2} \times \sqrt[3]{5} \times \sqrt[3]{f^2} \times \sqrt[3]{g^9}.
  4. Multiply Constants: For g93\sqrt[3]{g^9}, g9g^9 is a perfect cube (since 99 is divisible by 33), so we can take g3g^3 out of the cube root. This gives us 6×4×g3×23×53×f23.6 \times 4 \times g^3 \times \sqrt[3]{2} \times \sqrt[3]{5} \times \sqrt[3]{f^2}.
  5. Combine Numbers Inside Root: For f23\sqrt[3]{f^2}, we cannot simplify further since 22 is not divisible by 33. So, it remains inside the cube root.
  6. Compare with Answer Choices: Now, we multiply the constants outside the cube root: 6×4×g3=24g36 \times 4 \times g^3 = 24g^3. The expression now is 24g3×2×5×f2324g^3 \times \sqrt[3]{2 \times 5 \times f^2}.
  7. Compare with Answer Choices: Now, we multiply the constants outside the cube root: 6×4×g3=24g36 \times 4 \times g^3 = 24g^3. The expression now is 24g3×2×5×f2324g^3 \times \sqrt[3]{2 \times 5 \times f^2}. We can combine the numbers inside the cube root: 2×53=103\sqrt[3]{2 \times 5} = \sqrt[3]{10}. The expression simplifies to 24g3×10×f2324g^3 \times \sqrt[3]{10 \times f^2}.
  8. Compare with Answer Choices: Now, we multiply the constants outside the cube root: 6×4×g3=24g36 \times 4 \times g^3 = 24g^3. The expression now is 24g3×2×5×f2324g^3 \times \sqrt[3]{2 \times 5 \times f^2}. We can combine the numbers inside the cube root: 2×53=103\sqrt[3]{2 \times 5} = \sqrt[3]{10}. The expression simplifies to 24g3×10×f2324g^3 \times \sqrt[3]{10 \times f^2}. We compare the simplified expression with the answer choices. The expression 24g3×10×f2324g^3 \times \sqrt[3]{10 \times f^2} matches with choice (D).

More problems from Identify equivalent linear expressions I