Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which of the following expressions is equivalent to 
(54 k-12)/(-48 k+42) ?
Choose 1 answer:
(A) 
(9k-2)/(-8k+7)
(B) 
(9k-2)/(8k+7)
(C) 
(9k-2)/(-8k-7)
(D) 
(9k-12)/(-8k+7)

Which of the following expressions is equivalent to 54k1248k+42 \frac{54 k-12}{-48 k+42} ?\newlineChoose 11 answer:\newline(A) 9k28k+7 \frac{9 k-2}{-8 k+7} \newline(B) 9k28k+7 \frac{9 k-2}{8 k+7} \newline(C) 9k28k7 \frac{9 k-2}{-8 k-7} \newline(D) 9k128k+7 \frac{9 k-12}{-8 k+7}

Full solution

Q. Which of the following expressions is equivalent to 54k1248k+42 \frac{54 k-12}{-48 k+42} ?\newlineChoose 11 answer:\newline(A) 9k28k+7 \frac{9 k-2}{-8 k+7} \newline(B) 9k28k+7 \frac{9 k-2}{8 k+7} \newline(C) 9k28k7 \frac{9 k-2}{-8 k-7} \newline(D) 9k128k+7 \frac{9 k-12}{-8 k+7}
  1. Identify common factors: Identify common factors in the numerator and denominator.\newlineThe numerator 54k1254k - 12 and the denominator 48k+42-48k + 42 both have common factors. We can factor out a 66 from the numerator and a 6-6 from the denominator.
  2. Factor out common factors: Factor out the common factors from the numerator and denominator.\newlineNumerator: 54k12=6(9k2)54k - 12 = 6(9k - 2)\newlineDenominator: 48k+42=6(8k7)-48k + 42 = -6(8k - 7)
  3. Simplify the expression: Simplify the expression by canceling out the common factor. 6(9k2)6(8k7)=9k28k+7\frac{6(9k - 2)}{-6(8k - 7)} = \frac{9k - 2}{-8k + 7}
  4. Match with given choices: Match the simplified expression with the given choices.\newlineThe simplified expression (9k2)/(8k+7)(9k - 2) / (-8k + 7) matches with choice (A).

More problems from Identify equivalent linear expressions I