Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which expression is the result of factoring the expression below by taking out its greatest common factor?

6x^(2)-3x+12=?
Choose 1 answer:
(A) 
6(x^(2)-3x+2)
(B) 
6x(x^(2)-3x+2)
(C) 
3x(2x^(2)-x+4)
(D) 
3(2x^(2)-x+4)

Which expression is the result of factoring the expression below by taking out its greatest common factor?\newline6x23x+12=6x^{2}-3x+12=?\newlineChoose 11 answer:\newline(A) 6(x23x+2)6(x^{2}-3x+2)\newline(B) 6x(x23x+2)6x(x^{2}-3x+2)\newline(C) 3x(2x2x+4)3x(2x^{2}-x+4)\newline(D) 3(2x2x+4)3(2x^{2}-x+4)

Full solution

Q. Which expression is the result of factoring the expression below by taking out its greatest common factor?\newline6x23x+12=6x^{2}-3x+12=?\newlineChoose 11 answer:\newline(A) 6(x23x+2)6(x^{2}-3x+2)\newline(B) 6x(x23x+2)6x(x^{2}-3x+2)\newline(C) 3x(2x2x+4)3x(2x^{2}-x+4)\newline(D) 3(2x2x+4)3(2x^{2}-x+4)
  1. Identify GCF of terms: Identify the greatest common factor (GCF) of the terms in the expression 6x23x+126x^2 - 3x + 12.\newlineThe terms are 6x26x^2, 3x-3x, and 1212. The GCF of the coefficients (6,3,12)(6, -3, 12) is 33.
  2. Check for common variable factor: Check if there is a common variable factor in all terms.\newlineThe terms 6x26x^2 and 3x-3x both have the variable xx, but 1212 does not have any variable factor. Therefore, the variable xx is not part of the GCF.
  3. Factor out GCF from each term: Factor out the GCF from each term in the expression.\newlineDivide each term by the GCF (33) to find the expression inside the parentheses.\newline6x2÷3=2x26x^2 \div 3 = 2x^2\newline3x÷3=x-3x \div 3 = -x\newline12÷3=412 \div 3 = 4
  4. Write factored expression: Write the factored expression using the GCF.\newlineThe factored expression is 3(2x2x+4)3(2x^2 - x + 4).